山东省无棣县鲁北高新技术开发区实验学校2025届高二下数学期末统考模拟试题含解析_第1页
山东省无棣县鲁北高新技术开发区实验学校2025届高二下数学期末统考模拟试题含解析_第2页
山东省无棣县鲁北高新技术开发区实验学校2025届高二下数学期末统考模拟试题含解析_第3页
山东省无棣县鲁北高新技术开发区实验学校2025届高二下数学期末统考模拟试题含解析_第4页
山东省无棣县鲁北高新技术开发区实验学校2025届高二下数学期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省无棣县鲁北高新技术开发区实验学校2025届高二下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则直线被圆所截得的弦长为()A. B. C. D.2.已知为抛物线的焦点,点的坐标为,过点作斜率为的直线与抛物线交于、两点,延长、交抛物线于、两点设直线的斜率为,则()A.1 B.2 C.3 D.43.已知离散型随机变量的分布列为表格所示,则随机变量的均值为()0123A. B. C. D.4.已知、分别为的左、右焦点,是右支上的一点,与轴交于点,的内切圆在边上的切点为,若,则的离心率为()A. B. C. D.5.已知函数,若,,,则的取值范围是()A. B. C. D.6.已知函数,函数有四个不同的零点,从小到大依次为,,,,则的取值范围为()A. B. C. D.7.以下几个命题中:①线性回归直线方程恒过样本中心;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.其中真命题的个数为()A.1个 B.2个 C.3个 D.4个8.某中学元旦晚会共由6个节目组成,演出顺序有如下要求:节目甲必须排在乙的前面,丙不能排在最后一位,该晚会节目演出顺序的编排方案共有()A.720种 B.600种 C.360种 D.300种9.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.10.已知,则除以9所得的余数是A.2 B.3C.5 D.711.四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为()A. B. C. D.12.函数的图象大致为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点分别是双曲线:的左右两焦点,过点的直线与双曲线的左右两支分别交于两点,若是以为顶角的等腰三角形,其中,则双曲线离心率的取值范围为______.14.设向量,,若与垂直,则的值为_____15.在极坐标系中,点M(4,π3)16.从,中任取2个不同的数,事件“取到的两个数之和为偶数”,事件”取到的两个数均为偶数”,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)假定某篮球运动员每次投篮命中率均为.现有3次投篮机会,并规定连续两次投篮均不中即终止投篮,已知该运动员不放弃任何一次投篮机会,且恰好用完3次投篮机会的概率是.(1)求的值;(2)设该运动员投篮命中次数为,求的概率分布及数学期望.18.(12分)在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)若点坐标为,直线交曲线于,两点,求的值.19.(12分)已知函数(e为自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.20.(12分)在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t>0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(ρ≥0,0≤θ<2π).21.(12分)设数列的前项的和为,且满足,对,都有(其中常数),数列满足.(1)求证:数列是等比数列;(2)若,求的值;(3)若,使得,记,求数列的前项的和.22.(10分)某大学综合评价面试测试中,共设置两类考题:类题有4个不同的小题,类题有3个不同的小题.某考生从中任抽取3个不同的小题解答.(1)求该考生至少抽取到2个类题的概率;(2)设所抽取的3个小题中类题的个数为,求随机变量的分布列与均值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为,所以圆心到直线的距离,所以,应选答案B。2、D【解析】

设,,联立直线方程与抛物线方程可得,设,,则,,设AC,BD所在的直线方程可得,,由此可得的值.【详解】设过点F作斜率为的直线方程为:,

联立抛物线C:可得:,

设A,B两点的坐标为:,,

则,

设,,

则,同理,

设AC所在的直线方程为,

联立,得,

,同理,,

则.

故选:D.本题考查直线与抛物线的位置关系,考查斜率的计算,考查学生的计算能力,属于中档题.3、C【解析】分析:利用离散型随机变量分布列的性质求得到,进而得到随机变量的均值详解:由已知得,解得:∴E(X)=故选:C点睛:本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的基本性质,是基础题.4、A【解析】

由中垂线的性质得出,利用圆的切线长定理结合双曲线的定义得出,可得出的值,再结合的值可求出双曲线的离心率的值.【详解】如图所示,由题意,,由双曲线定义得,由圆的切线长定理可得,所以,,,即,所以,双曲线的离心率,故选:A.本题考查双曲线离心率的求解,同时也考查了双曲线的定义以及圆的切线长定理的应用,解题时要分析出几何图形的特征,在出现焦点时,一般要结合双曲线的定义来求解,考查分析问题和解决问题的能力,属于中等题.5、D【解析】

根据题意将问题转化为,记,从而在上单调递增,从而在上恒成立,利用分离参数法可得,结合题意可得即可.【详解】设,因为,所以.记,则在上单调递增,故在上恒成立,即在上恒成立,整理得在上恒成立.因为,所以函数在上单调递增,故有.因为,所以,即.故选:D本题考查了导数在不等式恒成立中的应用、函数单调性的应用,属于中档题.6、B【解析】分析:通过f(x)的单调性,画出f(x)的图象和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函数的单调性,可得所求范围.详解:当x>0时,f(x)=,可得f(x)在x>2递增,在0<x<2处递减,

由f(x)=e

(x+1)2,x≤0,

x<-1时,f(x)递减;-1<x<0时,f(x)递增,

可得x=-1处取得极小值1,

作出f(x)的图象,以及直线y=a,

可得e

(x1+1)2=e

(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,

x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0递减,

可得所求范围为[4,5).故选B.点睛:本题考查函数方程的转化思想,以及数形结合思想方法,考查二次函数的最值求法,化简整理的运算能力,属于中档题.7、C【解析】

由线性回归直线恒过样本中心可判断①,由相关指数的值的大小与拟合效果的关系可判断②,由随机误差和方差的关系可判断③,由相关指数和相关系数的关系可判断④.【详解】①线性回归直线方程恒过样本中心,所以正确.②用相关指数可以刻画回归的效果,值越大说明模型的拟合效果越好,所以错误.③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;所以正确.④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方,所以正确.所以①③④正确.故选:C本题考查线性回归直线方程和相关指数刻画回归效果、以及与相关系数的变形,属于基础题.8、D【解析】

根据题意,分2步进行分析:①,将除丙之外的5人排成一排,要求甲在乙的前面,②,5人排好后有5个空位可选,在其中任选1个,安排丙,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:将除丙之外的5人排成一排,要求甲在乙的前面,有种情况,②5人排好后有5个空位可选,在其中任选1个,安排丙,有5种情况,则有60×5=300种不同的顺序,故选D.本题考查排列、组合的实际应用,涉及分步计数原理的应用,属于基础题.9、D【解析】

根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.10、D【解析】

根据组合数的性质,将化简为,再展开即可得出结果.【详解】,所以除以9的余数为1.选D.本题考查组合数的性质,考查二项式定理的应用,属于基础题.11、A【解析】

通过分析每人有4种借阅可能,即可得到答案.【详解】对于甲来说,有4种借阅可能,同理每人都有4种借阅可能,根据乘法原理,故共有种可能,答案为A.本题主要考查乘法分步原理,难度不大.12、C【解析】函数f(x)=()cosx,当x=时,是函数的一个零点,属于排除A,B,当x∈(0,1)时,cosx>0,<0,函数f(x)=()cosx<0,函数的图象在x轴下方.排除D.故答案为C。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据双曲线的定义,可求得,设,由余弦定理可得,,进而可得结果.详解:如图,,又,则有,不妨假设,则有,可得,中余弦定理,,,即,故答案为.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求离心率范围问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.14、【解析】与垂直15、2【解析】曲线ρcos(θ-π3)=2化为直角坐标方程为x+3y=4,点M(416、【解析】

先求得事件所包含的基本事件总数,再求得事件所包含的基本事件总数,由此求得的值.【详解】依题意,事件所包含的基本事件为共六种,而事件所包含的基本事件为共三种,故.本小题主要考查条件概型的计算,考查列举法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,期望为.【解析】分析:(1)设事件:“恰用完3次投篮机会”,则其对立事件:“前两次投篮均不中”,所以,(2)的所有可能值为,计算其对应概率即可.详解:(1)设事件:“恰用完3次投篮机会”,则其对立事件:“前两次投篮均不中”,依题意,,解得.(2)依题意,的所有可能值为,且,,,故.的概率分布列为:数学期望.点睛:利用对立事件计算概率是概率问题中长用的方法,所以出现“至多”“至少”等其他关键字眼时要注意利用对立事件的思路解题,往往能够简化计算.18、(1),;(2).【解析】

(1)根据参普互化和极值互化的公式得到标准方程;(2)联立直线和圆的方程,得到关于t的二次,再由韦达定理得到.【详解】(1)由消去参数,得直线的普通方程为又由得,由得曲线的直角坐标方程为,即;(2)其代入得,则所以.19、(1)函数的单调递增区间是;单调递减区间是(2).【解析】试题分析:(1),根据题意,由于函数当t=-e时,即导数为,,函数的单调递增区间是;单调递减区间是(2)根据题意由于对于任意,不等式恒成立,则在第一问的基础上,由于函数,只要求解函数的最小值大于零即可,由于当t>0,函数子啊R递增,没有最小值,当t<0,那么可知,那么在给定的区间上可知当x=ln(-t)时取得最小值为2,那么可知t的取值范围是.考点:导数的运用点评:主要是考查了导数的运用,以及函数最值的运用,属于中档题.20、(1)曲线的普通方程为(或)曲线的直角坐标方程为.(2)交点极坐标为.【解析】

(1)先求出,再代入消元将曲线的参数方程化为普通方程,根据将,,.曲线的极坐标方程化为直角坐标方程;(2)先求曲线与曲线交点的直角坐标,再化为极坐标.(1)∵,∴,即,又,∴,∴或,∴曲线的普通方程为(或).∵,∴,∴,即曲线的直角坐标方程为.(2)由得,∴(舍去),,则交点的直角坐标为,极坐标为.本题考查曲线的普通方程、直角坐标方程的求法,考查两曲线交点的极坐标的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21、(1)见解析;(2).【解析】分析:(1)因为两式相减,时所以数列是等比数列(2)(3).所以显然分类讨论即可详解:(1)证明:因为,都有,所以两式相减得,即,当时,所以,又因为,所以,所以数列是常数列,,所以是以2为首项,为公比的等比数列.(2)由(1)得.所以.(3)由(1)得..因为,所以当时,,当时,.因此数列的前项的和.点睛:数列问题中出现一般都要用这个原理解题,但要注意验证时是否满

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论