




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同一中2024-2025学年数学高二第二学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的所有零点的积为m,则有()A. B. C. D.2.若,则的取值范围为()A. B. C. D.3.己知函数,其中为函数的导数,求()A. B. C. D.4.设,,,则的值分别为()A.18, B.36, C.36, D.18,5.如图,向量对应的复数为,则复数的共轭复数是()A. B. C. D.6.设是平面内的两条不同直线,是平面内两条相交直线,则的一个充分不必要条件是()A.B.C.D.7.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在内的人数占公司总人数的百分比是(精确到)()A. B. C. D.8.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星至地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c.李明根据所学的椭圆知识,得到下列结论:①卫星向径的最小值为a-c,最大值为a+c;②卫星向径的最小值与最大值的比值越小,椭圆轨道越扁;③卫星运行速度在近地点时最小,在远地点时最大其中正确结论的个数是A.0 B.1 C.2 D.39.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是()A.乙做对了 B.甲说对了 C.乙说对了 D.甲做对了10.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数的虚部为()A. B. C. D.11.在(x-)10的展开式中,的系数是()A.-27 B.27 C.-9 D.912.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从,中任取2个不同的数,事件“取到的两个数之和为偶数”,事件”取到的两个数均为偶数”,则_______.14.圆柱的高为1,侧面展开图中母线与对角线的夹角为60°,则此圆柱侧面积是_________.15.随机变量服从二项分布,且,,则等于__________.16.校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.(1)讨论函数f(x)的单调性并求极值;(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.18.(12分)已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上为单调递增函数,求的取值范围;(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.证明:.19.(12分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)已知点的极坐标为,求的值21.(12分)已知向量,设函数(1)求的最小正周期(2)求函数的单调递减区间(3)求在上的最大值和最小值22.(10分)已知数列{an}和b(1)求an与b(2)记数列{anbn}的前n
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
作函数y=e-x与y=|log2x|的图象,设两个交点的坐标为(x1,y1),(x2,y2)(不妨设x1<x2),得到0<x1<1<x2<2,运用对数的运算性质可得m的范围.【详解】令f(x)=0,即e-x=|log2x|,
作函数y=e-x与y=|log2x|的图象,
设两个交点的坐标为(x1,y1),(x2,y2)
(不妨设x1<x2),
结合图象可知,0<x1<1<x2<2,
即有e-x1=-log2x1,①
e-x2=log2x2,②
由-x1>-x2,
②-①可得log2x2+log2x1<0,
即有0<x1x2<1,
即m∈(0,1).
故选:B.本题考查指数函数和对数函数的图象,以及转化思想和数形结合的思想应用,属于中档题.2、D【解析】
由,得,设,,当时,递减;当时,递增,,,故选D.【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题.不等式恒成立问题常见方法:①分离参数恒成立(可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.本题是利用方法①求得的范围.3、A【解析】
设,判断奇偶性和导数的奇偶性,求和即可得到所求值.【详解】解:函数设,则即,即,则,又,,可得,即有,故选:.本题考查函数的奇偶性和导数的奇偶性,考查运算能力,属于中档题.4、A【解析】
由ξ~B(n,p),Eξ=12,Dξ=4,知np=12,np(1﹣p)=4,由此能求出n和p.【详解】∵Eξ=12,Dξ=4,∴np=12,np(1﹣p)=4,∴n=18,p.故选A.本题考查离散型随机变量的期望和方差,解题时要注意二项分布的性质和应用.5、B【解析】
由已知求得,代入,再由复数代数形式的乘除运算化简得答案.【详解】解:由图可知,,,复数的共轭复数是.故选:.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.6、B【解析】试题分析:A.不能得出,所以本题条件是的不充分条件;B.,当时,不一定有故本命题正确;C.不能得出,故不满足充分条件;D.不能得出,故不满足充分条件;故选B.考点:平面与平面垂直的方法.7、A【解析】
求出样本平均值与方差,可得年龄在内的人数有5人,利用古典概型概率公式可得结果.【详解】,,年龄在内,即内的人数有5人,所以年龄在内的人数占公司总人数的百分比是等于,故选A.样本数据的算术平均数公式.样本方差公式,标准差.8、C【解析】
根据椭圆的焦半径的最值来判断命题①,根据椭圆的离心率大小与椭圆的扁平程度来判断命题②,根据题中“速度的变化服从面积守恒规律”来判断命题③。【详解】对于命题①,由椭圆的几何性质得知,椭圆上一点到焦点距离的最小值为a-c,最大值为a+c,所以,卫星向径的最小值为a-c,最大值为a+c,结论①正确;对于命题②,由椭圆的几何性质知,当椭圆的离心率e=ca越大,椭圆越扁,卫星向径的最小值与最大值的比值a-ca+c对于命题③,由于速度的变化服从面积守恒规律,即卫星的向径在相同的时间内扫过的面积相等,当卫星越靠近远地点时,向径越大,当卫星越靠近近地点时,向径越小,由于在相同时间扫过的面积相等,则向径越大,速度越小,所以,卫星运行速度在近地点时最大,在远地点时最小,结论③错误。故选:C。本题考查椭圆的几何性质,考查椭圆几何量对椭圆形状的影响,在判断时要充分理解这些几何量对椭圆形状之间的关系,考查分析问题的能力,属于中等题。9、B【解析】
分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项.【详解】分以下三种情况讨论:①甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;②乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾;③丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾.故选:B.本题考查简单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.10、C【解析】
先由题意得到,进而可求出结果.【详解】由题意可得:,所以虚部为.故选C本题主要考查复数的应用,熟记复数的概念即可,属于常考题型.11、D【解析】试题分析:通项Tr+1=x10-r(-)r=(-)rx10-r.令10-r=6,得r=4.∴x6的系数为9考点:二项式定理12、D【解析】
根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求得事件所包含的基本事件总数,再求得事件所包含的基本事件总数,由此求得的值.【详解】依题意,事件所包含的基本事件为共六种,而事件所包含的基本事件为共三种,故.本小题主要考查条件概型的计算,考查列举法,属于基础题.14、【解析】
根据圆柱结构特征可知侧面展开图为矩形,利用正切值求得矩形的长,从而可得侧面积.【详解】圆柱侧面展开图为矩形,且矩形的宽为矩形的长为:圆柱侧面积:本题正确结果:本题考查圆柱侧面积的相关计算,属于基础题.15、900【解析】
根据二项分布的期望和方差,列出关于和的方程组,可解出的值.【详解】由题意可得,解得,故答案为.本题考查二项分布的数学期望和方差的计算,解题的关键就是这两个公式的应用,考查运算求解能力,属于基础题.16、528【解析】(1)当三辆车都不相邻时有(种)(2)当两辆车相邻时有(种)(3)当三辆车相邻时有(种)则共有(种)点睛:本题考查了排列组合问题,由于本题里是三辆车有六个位置,所以情况较多,需要逐一列举出来,注意当三辆车都不相邻时的情况要考虑周全,容易漏掉一些情况,然后利用排列组合进行计算即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)函数f(x)的定义域为(1,+∞).求出函数的导函数,然后对a分类讨论可得原函数的单调性并求得极值;(2)对g(x)求导函数,对a分类讨论,当a≥1时,易得g(x)为单调递增,有g(x)≥g(1)=1,符合题意.当a<1时,结合零点存在定理可得存在x1∈(1,)使g′(x1)=1,再结合g(1)=1,可得当x∈(1,x1)时,g(x)<1,不符合题意.由此可得实数a的取值范围.【详解】(1)函数f(x)的定义域为(1,+∞).f′(x).①当a≤1时,f′(x)<1,可得函数f(x)在(1,+∞)上单调递减,f(x)无极值;②当a>1时,由f′(x)>1得:1<x,可得函数f(x)在(1,)上单调递增.由f′(x)<1,得:x,可得函数f(x)在(,+∞)单调递减,∴函数f(x)在x时取极大值为:f()=alna﹣2a;(2)由题意有g(x)=alnx﹣ex+ex,x∈[1,+∞).g′(x).①当a≥1时,g′(x).故当x∈[1,+∞)时,g(x)=alnx﹣ex+ex为单调递增函数;g(x)≥g(1)=1,符合题意.②当a<1时,g′(x),令函数h(x),由h′(x)1,c∈[1,+∞),可知:g′(x)为单调递增函数,又g′(1)=a<1,g′(x),当x时,g′(x)>1.∴存在x1∈(1,)使g′(x1)=1,因此函数g(x)在(1,x1)上单调递减,在(x1,+∞)上单调递增,又g(1)=1,∴当x∈(1,x1)时,g(x)<1,不符合题意.综上,所求实数a的取值范围为[1,+∞).本题考查利用导数研究函数的单调性,考查利用导数求函数的最值,考查数学转化思想方法及分类讨论的数学思想方法,考查了利用了进行放缩的技巧,是难题.18、(1)-1;(2);(3)参考解析【解析】试题分析:(1),可知在[,1]是增函数,在[1,2]是减函数,所以最大值为f(1).(2)在区间上为单调递增函数,即在上恒成立.,利用分离参数在上恒成立,即求的最大值.(3)有两个实根,,两式相减,又,.要证:,只需证:,令可证.试题解析:(1)函数在[,1]是增函数,在[1,2]是减函数,所以.(2)因为,所以,因为在区间单调递增函数,所以在(0,3)恒成立,有=,()综上:(3)∵,又有两个实根,∴,两式相减,得,∴,于是.要证:,只需证:只需证:.(*)令,∴(*)化为,只证即可.在(0,1)上单调递增,,即.∴.(其他解法根据情况酌情给分)19、(1)(2)【解析】【试题分析】(1)先求事件“随机抽取2名,(其中男、女各一名)都选择网购”概率,再运用对立事件的概率公式求至少1名倾向于选择实体店的概率;(2)先确定随机变量取法,分别求出对应概率,列表可得分布列,最后运用随机变量的数学期望公式计算出数学期望解:(1)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(2)X的取值为0,1,2,1.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=1)=.E(X)=0×+1×+2×+1×=.20、(1).(2).【解析】分析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学历史试题及答案解析
- java项目搭建面试题及答案
- 公共政策中的少数群体权益保障研究试题及答案
- 软件设计师考试重要考点抓取技巧与试题与答案
- 社会治理中的公共政策创新方法试题及答案
- 软件设计师考试重要趋势及试题与答案
- 用户习惯对软件设计的影响及试题与答案
- 西方国家经济政策与政治动荡的关系试题及答案
- 计算机三级软件测试与公共政策实践结合试题及答案
- 实战演练机电工程考试试题及答案
- 公共知识法律试题及答案
- 天津市公安局为留置看护总队招聘警务辅助人员笔试真题2024
- 2025-2030中国光稳定剂行业市场现状供需分析及投资评估规划分析研究报告
- 浙江省强基联盟2024-2025学年高一下学期5月月考地理试题(含答案)
- 合肥市2025届高三年级5月教学质量检测(合肥三模)物理试题+答案
- 《高等数学》全册教案教学设计
- 工程样板验收表格
- 应急管理部《安全生产十五条措施》专题片
- 粘包钢加固施工方案
- 信息管理学教程ppt课件汇总(完整版)
- 《基于VerilogHDL的乐曲演奏电路设计》
评论
0/150
提交评论