云南省普洱市墨江第二中学2024-2025学年高二数学第二学期期末达标测试试题含解析_第1页
云南省普洱市墨江第二中学2024-2025学年高二数学第二学期期末达标测试试题含解析_第2页
云南省普洱市墨江第二中学2024-2025学年高二数学第二学期期末达标测试试题含解析_第3页
云南省普洱市墨江第二中学2024-2025学年高二数学第二学期期末达标测试试题含解析_第4页
云南省普洱市墨江第二中学2024-2025学年高二数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省普洱市墨江第二中学2024-2025学年高二数学第二学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,那么集合中满足条件“”的元素个数为()A.60 B.65 C.80 D.812.设是一个三次函数,为其导函数.图中所示的是的图像的一部分.则的极大值与极小值分别是().A.与 B.与 C.与 D.与3.已知曲线与直线围成的图形的面积为,则()A.1 B. C. D.4.设i为虚数单位,复数等于()A. B.2i C. D.05.若,则()A. B. C. D.6.设,“”,“”,则是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是().爱好不爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”8.已知、是双曲线的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是()A. B. C. D.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.510.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.11.设方程的两个根为,则()A. B. C. D.12.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为虚数单位,若,则________.14.函数,当时,恒成立,求.15.某微信群中甲、乙、丙、丁、戊五名成员先后抢4个不相同的红包,每人最多抢一个红包,且红包全被抢光,则甲乙两人都抢到红包的情况有________种16.已知过抛物线的焦点F的直线交该抛物线于A、B两点,,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有3名男生和3名女生,每人都单独参加某次面试,现安排他们的出场顺序.(Ⅰ)若女生甲不在第一个出场,女生乙不在最后一个出场,求不同的安排方式总数;(Ⅱ)若3名男生的出场顺序不同时相邻,求不同的安排方式总数(列式并用数字作答).18.(12分)已知函数.(1)若,解不等式;(2)若不等式对任意的实数恒成立,求的取值范围.19.(12分)设,复数,其中为虚数单位.(1)当为何值时,复数是虚数?(2)当为何值时,复数是纯虚数?20.(12分)已知椭圆C:,点P(0,1).(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?21.(12分)某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:方案一:逐瓶检验,则需检验次;方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.(i)若与的期望相等.试求关于的函数解析式;(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.参考数据:22.(10分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若,且,,求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意可得,成立,需要分五种情况讨论:当时,只有一种情况,即;当时,即,有种;当时,即,有种;当时,即,有种当时,即,有种,综合以上五种情况,则总共为:种,故选D.【点睛】本题主要考查了创新型问题,往往涉及方程,不等式,函数等,对涉及的不同内容,先要弄清题意,看是先分类还是先步,再处理每一类或每一步,本题抓住只能取相应的几个整数值的特点进行分类,对于涉及多个变量的排列,组合问题,要注意分类列举方法的运用,且要注意变量取值的检验,切勿漏掉特殊情况.2、C【解析】

易知,有三个零点因为为二次函数,所以,它有两个零点由图像易知,当时,;当时,,故是极小值类似地可知,是极大值.故答案为:C3、D【解析】分析:首先求得交点坐标,然后结合微积分基本定理整理计算即可求得最终结果.详解:联立方程:可得:,,即交点坐标为,,当时,由定积分的几何意义可知围成的图形的面积为:,整理可得:,则,同理,当时计算可得:.本题选择D选项.点睛:(1)一定要注意重视定积分性质在求值中的应用;(2)区别定积分与曲边梯形面积间的关系,定积分可正、可负、也可以为0,是曲边梯形面积的代数和,但曲边梯形面积非负.4、B【解析】

利用复数除法和加法运算求解即可【详解】故选B本题考查复数的运算,准确计算是关键,是基础题5、C【解析】分析:由题意根据二项式展开式的通项公式可得,再分别求得的值,从而可得结果.详解:由常数项为零,根据二项式展开式的通项公式可得,且,,,故选C.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.6、C【解析】

利用不等式的性质和充分必要条件的定义进行判断即可得到答案.【详解】充分性:.所以即:,充分性满足.必要性:因为,所以,.又因为,所以,即.当时,,不等式不成立.当时,,,不等式不成立当时,,,不等式成立.必要性满足.综上:是的充要条件.故选:C本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.7、A【解析】

对照表格,看在中哪两个数之间,用较小的那个数据说明结论.【详解】由≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A.本题考查独立性检验,属于基础题.8、C【解析】

设为边的中点,由双曲线的定义可得,因为正三角形的边长为,所以有,进而解得答案。【详解】因为边的中点在双曲线上,设中点为,则,,因为正三角形的边长为,所以有,整理可得故选C本题考查双曲线的定义及离心率,解题的关键是由题意求出的关系式,属于一般题。9、A【解析】

因为抛物线的焦点是,所以双曲线的半焦距,,,所以一条渐近线方程为,即,,故选A.【点考点定位】本题主要考查双曲线、抛物线的标准方程、几何性质、点和直线的位置关系,考查推理论证能力、逻辑思维能力、计算求解能力、数形结合思想、转化化归思想10、A【解析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11、D【解析】

画出方程左右两边所对应的函数图像,结合图像可知答案。【详解】画出函数与的图像,如图结合图像容易知道这两个函数的图像有两个交点,交点的横坐标即为方程的两个根,结合图像可知,,根据是减函数可得,所以有图像可知所以即,则,所以,而所以故选D本题考查对数函数与指数函数的图像与性质,解题的关键是画出图像,利用图像解答,属于一般题。12、A【解析】

解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m.∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,得,则,故答案为.14、【解析】试题分析:由题意得,,因此,从而,考点:二次函数性质15、72【解析】第一步甲乙抢到红包,有种,第二步其余三人抢剩下的两个红包,有种,所以甲乙两人都抢到红包的情况有种.16、2【解析】试题分析:焦点坐标,准线方程,由|AF|=2可知点A到准线的距离为2,所以轴,考点:抛物线定义及直线与抛物线相交的弦长问题点评:抛物线定义:抛物线上的点到焦点的距离等于到准线的距离,依据定义可实现两个距离的转化三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)504(Ⅱ)576【解析】

(Ⅰ)按女生甲分类:甲在最后一位出场,女生甲不在最后一位出场,两种情况相加得到答案.(Ⅱ)先考虑3名男生全相邻时的安排数,再用总的安排数减去此数得到答案.【详解】解:(Ⅰ)方法一:不考虑任何限制,6名同学的出场的总数为,女生甲在第一个出场和女生乙在最后一个出场的总数均为,女生甲在第一个出场且女生乙在最后一个出场的总数为,则符合条件的安排方式总数为;方法二:按女生甲分类,甲在最后一位出场的总数为,女生甲不在最后一位出场,甲只能在除首尾之外的四个位置中选择一个,女生乙再在余四个位置中选择一个,出场的总数为,则符合条件的安排方式总数为;(Ⅱ)3名男生全相邻时,将3名男生看成一个整体,与3名女生一起看作4元素,共有种安排方式.本题考查了排列组合里面的加法原理和排除法,意在考查学生解决问题的能力.18、(1);(2)【解析】分析:第一问先将代入解析式,之后应用零点分段法将绝对值不等式转化为若干个不等式组,最后取并集即可得结果;第二问将恒成立问题转化为最值问题来处理,应用绝对值的性质,将不等式的左边求得其最小值,之后将其转化为关于b的绝对值不等式,利用平方法求得结果.详解:(1)所以解集为:.(2)所以的取值范围为:.点睛:该题考查的是有关绝对值不等式的求解问题,在解题的过程中,需要用到零点分段法求绝对值不等式的解集,再者对于恒成立问题可以向最值来转化,而求最值时需要用到绝对值不等式的性质,之后应用平方法求解即可得结果.19、(1)且;(2).【解析】

(1)根据虚数概念列条件,解得结果;(2)根据纯虚数概念列条件,解得结果.【详解】(1)要使复数是虚数,必须使且当且时,复数是虚数.(2)要使复数是纯虚数,必须使解得:当时,复数是纯虚数.本题考查复数虚数与纯虚数概念,考查基本分析求解能力,属基础题.20、(1);(2)直线AB过定点.【解析】

(1)先由题意得到直线PA的方程,联立直线与椭圆,得到A点坐标,再由弦长公式,即可求出结果;(2)先由题意,得到,直线的斜率必存在,设直线为,联立直线与椭圆方程,根据韦达定理,得到,再由,结合题意,求出,进而可得出结果.【详解】解:(1)把代入得:,所以(2)由题意可以,直线的斜率必存在,设直线为,有,所以,即直线AB过定点本题主要考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论