




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆昌吉市教育共同体四校2024-2025学年数学高二第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随机变量的概率分布为,其中是常数,则()A. B. C. D.2.已知为抛物线上的不同两点,为抛物线的焦点,若,则()A. B.10 C. D.63.下列关于独立性检验的叙述:①常用等高条形图展示列联表数据的频率特征;②独立性检验依据小概率原理;③样本不同,独立性检验的结论可能有差异;④对分类变量与的随机变量的观测值来说,越小,与有关系的把握程度就越大.其中正确的个数为()A.1 B.2 C.3 D.44.从名男生和名女生中选出人去参加辩论比赛,人中既有男生又有女生的不同选法共有()A.种 B.种 C.种 D.种5.随机变量服从正态分布,若,,则()A.3 B.4 C.5 D.66.若(3x-1x)A.-5B.5C.-405D.4057.已知函数,若,,,则,,的大小关系是()A. B. C. D.8.已知双曲线的左、右焦点分别为、,、分别是双曲线左、右两支上关于坐标原点对称的两点,且直线的斜率为.、分别为、的中点,若原点在以线段为直径的圆上,则双曲线的离心率为()A. B. C. D.9.设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则()A.1或9 B.6 C.9 D.以上都不对10.的展开式中的常数项为()A. B. C. D.11.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法()A. B.C. D.12.下列命题中不正确的是()A.空间中和两条相交直线都平行的两个平面平行B.空间中和两条异面直线都平行的两个平面平行C.空间中和两条平行直线都垂直的两个平面平行D.空间中和两条平行直线都平行的两个平面平行二、填空题:本题共4小题,每小题5分,共20分。13.人并排站成一行,其中甲、乙两人必须相邻,那么不同的排法有__________种.(用数学作答)14.已知二项式展开式的第项与第项之和为零,那么等于____________.15.若复数满足,其中是虚数单位,则的实部为______.16.已知从装有个球(其中个白球,1个黑球)的口袋中取出个球,,,共有种取法,在这种取法中,可以分成两类:一类是取出的个球全部为白球,另一类是取出1个黑球和个白球,共有种取法,即有等式成立,试根据上述思想,化简下列式子:________,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数的最小值为2,求实数的值;(2)若当时,不等式恒成立,求实数的取值范围.18.(12分)小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示,但因不小心将部分数据损毁,只是记得女生选择几何题的频率是.几何题代数题合计男同学22830女同学合计(1)根据题目信息补全上表;(2)能否根据这个调查数据判断有的把握认为选代数题还是几何题与性别有关?参考数据和公式:0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.879,其中.19.(12分)已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)如图,在四棱锥中,底面是边长为2的菱形,平面,,为的中点.(1)证明:;(2)求二面角的余弦值.21.(12分)如图,在三棱柱ABC−中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==1.(1)求证:AC⊥平面BEF;(1)求二面角B−CD−C1的余弦值;(3)证明:直线FG与平面BCD相交.22.(10分)2019年某地初中毕业升学体育考试规定:考生必须参加长跑.掷实心球.1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?附:参考公式临界值表:(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数X服从正态分布N(μ,σ2)(用样本数据的平值和方差估计总体的期望和方差,各组数据用中点值代替)①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为ξ,求ξ占的分布列及期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:由已知得可得a值,在求出期望算方差即可.详解:因为随机变量的概率分布为,故得,故E(X)=,又,而,故=,选B点睛:考查分布列的性质和期望、方差的计算,熟悉公式即可,属于基础题.2、C【解析】
设,根据,可求得这些坐标间的关系,再结合两点在抛物线上,可求得,而,由此可得结论.【详解】设,则,又,∴,∴,,∴,由,得,∴.故选C.本题考查向量的数乘的意义,考查抛物线的焦点弦问题.掌握焦点弦长公式是解题基础:即对抛物线而言,,是抛物线的过焦点的弦,则.3、C【解析】分析:根据独立性检验的定义及思想,可得结论.详解:①常用等高条形图展示列联表数据的频率特征;正确;②独立性检验依据小概率原理;正确;③样本不同,独立性检验的结论可能有差异;正确;④对分类变量与的随机变量的观测值来说,越大,与有关系的把握程度就越大.故④错误.故选C.点睛:本题考查了独立性检验的原理,考查了推理能力,属于基础题.4、C【解析】
在没有任何限制的情况下减去全是男生和全是女生的选法种数,可得出所求结果.【详解】全是男生的选法种数为种,全是女生的选法种数为种,因此,人中既有男生又有女生的不同选法为种,故选C.本题考查排列组合问题,可以利用分类讨论来求解,本题的关键在于利用间接法来求解,可避免分类讨论,考查分析问题和解决问题的能力,属于中等题.5、B【解析】
直接根据正态曲线的对称性求解即可.【详解】,,,即,,故选B.本题主要考查正态分布与正态曲线的性质,属于中档题.正态曲线的常见性质有:(1)正态曲线关于对称,且越大图象越靠近右边,越小图象越靠近左边;(2)边越小图象越“痩长”,边越大图象越“矮胖”;(3)正态分布区间上的概率,关于对称,6、C【解析】由题设可得2n=32⇒n=5,则通项公式Tr+1=C5r7、D【解析】
可以得出,从而得出c<a,同样的方法得出a<b,从而得出a,b,c的大小关系.【详解】,,根据对数函数的单调性得到a>c,,又因为,,再由对数函数的单调性得到a<b,∴c<a,且a<b;∴c<a<b.故选D.考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.8、C【解析】
根据、分别为、的中点,故OM平行于,ON平行于,再由向量点积为0得到四边形是矩形,通过几何关系得到点A的坐标,代入双曲线得到齐次式,求解离心率.【详解】因为、分别为、的中点,故OM平行于,ON平行于,因为原点在以线段为直径的圆上,根据圆的几何性质得到OM垂直于ON,故得到垂直于,由AB两点关于原点对称得到,四边形对角线互相平分,所以四边形是矩形,设角,根据条件得到,将点A代入双曲线方程得到:解得故答案为C.本题考查双曲线的几何性质及其应用,对于双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).9、C【解析】
根据双曲线的一条渐近线方程为求出,由双曲线的定义求出,判断点在左支上,即求.【详解】双曲线的渐近线方程为,又双曲线的一条渐近线方程为,.由双曲线的定义可得,又,或.点在左支上,.故选:.本题考查双曲线的定义和性质,属于基础题.10、C【解析】
化简二项式的展开式,令的指数为零,求得常数项.【详解】二项式展开式的通项为,令,故常数项为,故选C.本小题主要考查二项式展开式的通项公式,考查二项式展开式中的常数项,属于基础题.11、A【解析】先分语文书有种,再分数学书有,故共有=,故选A.12、D【解析】
作出几何体,根据图像,结合线面、面面间的关系,即可得出结果.【详解】如下图,m∥n,且m,n与底面α、左面β都平行,但α、β相交,所以,D不正确.由面面平行的判定可知A、B、C都正确.故选D本主要考查空间中,直线、平面间的位置关系,熟记线面、面面位置关系,即可求出结果.二、填空题:本题共4小题,每小题5分,共20分。13、240【解析】分析:甲、乙两人必须相邻,利用捆绑法与其余的人全排即可.详解:甲乙相邻全排列种排法,利用捆绑法与其余的人全排有种排法,共有,故答案为.点睛:常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.14、1【解析】
用项式定理展开式通项公式求得第4项和第5项,由其和为0求得.【详解】二项式展开式的第项为,第5项为,∴,解得.故答案为:1.本题考查二项式定理,考查二项展开式的通项公式,属于基础题.15、3【解析】
由复数除法求得复数z,再求得复数实部.【详解】由题意可得,所以的实部为3,填3.本题主要考查复数的除法以及复数的实部辨析,属于简单题.16、【解析】
在式子中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,从装有球中取出个球的不同取法数,根据排列组合公式,易得答案.【详解】在中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,故从装有球中取出个球的不同取法数.故答案为:本题结合考查推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或.(2)【解析】
(1)利用绝对值不等式可得=2,即可得出的值.(2)不等式在上恒成立等价于在上恒成立,故的解集是的子集,据此可求的取值范围.【详解】解:(1)因为,所以.令,得或,解得或.(2)当时,.由,得,即,即.据题意,,则,解得.所以实数的取值范围是.(1)绝对值不等式指:及,我们常利用它们求含绝对值符号的函数的最值.(2)解绝对值不等式的基本方法有公式法、零点分段讨论法、图像法、平方法等,利用公式法时注意不等号的方向,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图像法求解时注意图像的正确刻画.18、(1)见解析;(2)有97.5%的把握认为选代数题还是几何题与性别有关【解析】
(1)女生中选几何题的有人,由此补全列联表即可(2)计算的值,对照临界值表下结论即可【详解】(1)由已知女生共20人,所以女生中选几何题的有(人),故表格补全如下:几何题代数题合计男同学22830女同学81220合计302050(2)由列联表知故有97.5%的把握认为选代数题还是几何题与性别有关本题考查独立性检验,考查能力,是基础题19、(1)(2)【解析】
(1)先设等差数列的公差为,根据题中条件求出公差,即可得出通项公式;(2)根据前项和公式,即可求出结果.【详解】(1)依题意,设等差数列的公差为,因为,所以,又,所以公差,所以.(2)由(1)知,,所以本题主要考查等差数列,熟记等差数列的通项公式与前项和公式即可,属于基础题型.20、(1)见解析;(2).【解析】
(1)证明,再证明平面,即可证明;(2)以为原点建立空间直角坐标系,再求平面以及平面的法向量,再求两个平面法向量夹角的余弦值,结合图像即可求得二面角的余弦值.【详解】(1)证明:连接,.因为四边形是菱形且,为的中点,所以.因为平面,所以,又,所以平面,则.因为,所以.(2)以为原点建立空间直角坐标系(其中为与的交点),如图所示,则,,,.设平面的法向量为,则,,即,令,得.设平面的法向量为,则,,即,令,得.所以,由图可知二面角为钝角,故二面角的余弦值为.本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.21、(2)见解析(2);(3)见解析.【解析】
分析:(2)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线FG方向向量数量积不为零,可得结论.详解:(Ⅰ)在三棱柱ABC-A2B2C2中,∵CC2⊥平面ABC,∴四边形A2ACC2为矩形.又E,F分别为AC,A2C2的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC2.又CC2⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- c语言机考考试题及答案
- 2025年投资学考研试题及答案
- 抖店内衣考试题库及答案
- 现代网络存储技术试题及答案
- 西方政治制度与社会责任试题及答案
- 学习机电工程考试中的含金量知识试题及答案
- 2024年片剂机械资金筹措计划书代可行性研究报告
- 网络工程师技能提升建议试题及答案
- 西方政治制度对原住民权利的影响试题及答案
- 轻松应对2025年网络工程师试题及答案
- 可行性研究报告编制项目进度保证措施
- 绩效与薪酬管理:薪酬设计
- 广东省东莞市2022-2023学年高二上学期期末考试化学试题(解析版)
- 110kV变电站及110kV输电线路运维投标技术方案(第二部分)
- 生物的基因组演化与种群遗传结构
- 第七章 水利工程管理法规讲解
- 十月稻田员工手册
- 23秋国家开放大学《西方行政制度》大作业1-4参考答案
- 《水安将军》知识考试题库(500题版)
- 2024-2024年全国初中化学竞赛试卷及答案-副本
- 口腔颌面部皮瓣移植修复术后护理学习培训课件
评论
0/150
提交评论