




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市云富高级中学2025届高二下数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A.100 B.200 C.300 D.4002.用秦九韶算法求次多项式,当时,求需要算乘方、乘法、加法的次数分别为()A. B. C. D.3.若动圆的圆心在抛物线上,且与直线相切,则动圆必过一个定点,该定点坐标为()A. B. C. D.4.若,,满足,,.则()A. B. C. D.5.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有()A.24种B.52种C.10种D.7种6.如图,矩形的四个顶点依次为,,记线段、以及的图象围成的区域(图中阴影部分)为,若向矩形内任意投一点,则点落在区域内的概率为()A. B.C. D.7.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A. B. C. D.8.某家具厂的原材料费支出与销售量(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为x24568y2535605575A.5 B.10 C.12 D.209.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.10.函数在点处的切线方程为()A. B.C. D.11.在中,,若,则A. B. C. D.12.观察下面频率等高条形图,其中两个分类变量x,y之间关系最强的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知X的分布列为X-101Pa设,则E(Y)的值为________14.如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为__________海里.15.二项式的展开式的常数项为________(用数字作答).16.如图为某几何体的三视图,则其侧面积为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:.(1)求直线的普通方程及曲线直角坐标方程;(2)若曲线上的点到直线的距离的最小值.18.(12分)小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示:几何题代数题合计男同学22830女同学81220合计302050(1)能否据此判断有的把握认为选代数题还是几何题与性别有关?(2)用以上列联表中女生选做几何题的频率作为概率,从该校所有女生(该校女生超过1200人)中随机选5名女生,记5名女生选做几何题的人数为,求的数学期望和方差.附表:0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.879参考公式:,其中.19.(12分)已知点是双曲线上的点.(1)记双曲线的两个焦点为,若,求点到轴的距离;(2)已知点的坐标为,是点关于原点的对称点,记,求的取值范围.20.(12分)设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2.(1)当S1=S2时,求点P的坐标;(2)当S1+S2有最小值时,求点P的坐标和最小值.21.(12分)已知函数.(1)当时,求曲线在处的切线方程;(2)若恒成立,求实数的取值范围.22.(10分)在直角坐标系中,直线的参数方程为(为参数),直线与直线平行,且过坐标原点,圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)设直线和圆相交于点、两点,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
试题分析:设没有发芽的种子数为,则,,所以考点:二项分布【方法点睛】一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.2、D【解析】求多项式的值时,首先计算最内层括号内一次多项式的值,即然后由内向外逐层计算一次多项式的值,即..….这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.∴对于一个n次多项式,至多做n次乘法和n次加法故选D.3、A【解析】
直线为的准线,圆心在该抛物线上,且与直线相切,则圆心到准线的距离即为半径,那么根据抛物线的定义可知定点坐标为抛物线焦点.【详解】由题得,圆心在上,它到直线的距离为圆的半径,为的准线,由抛物线的定义可知,圆心到准线的距离等于其到抛物线焦点的距离,故动圆C必过的定点为抛物线焦点,即点,故选A.本题考查抛物线的定义,属于基础题.4、A【解析】
利用指数函数和对数函数的单调性即可比较大小.【详解】,,,,,,,,,故选:A.本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.5、A【解析】因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.故选A.6、D【解析】分析:利用定积分的几何意义求出阴影部分的面积,由几何概型的概率公式,即可得结果.详解:阴影部分的面积是,矩形的面积是,点落在区域内的概率,故选D.点睛:本题主要考查定积分的几何意义以及几何概型概率公式,属于中档题.一般情况下,定积分的几何意义是介于轴、曲线以及直线之间的曲边梯形面积的代数和,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.7、B【解析】
由y=f′(x)的图象知,y=f(x)的图象为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢.故选B.8、B【解析】分析:先求样本中心,代入方程求解即可。详解:,,代入方程,解得,故选B点睛:回归直线方程必过样本中心。9、A【解析】
根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.10、B【解析】
首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.本题考查导数的几何意义,属于基础题.11、A【解析】
根据平面向量的线性运算法则,用、表示出即可.【详解】即:本题正确选项:本题考查平面向量的加法、减法和数乘运算,属于基础题.12、D【解析】
在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,即可得出结论.【详解】在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中x1,x2所占比例相差越大,则分类变量x,y关系越强,故选D.本题考查独立性检验内容,使用频率等高条形图,可以粗略的判断两个分类变量是否有关系,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先利用频率之和为求出的值,利用分布列求出,然后利用数学期望的性质得出可得出答案.【详解】由随机分布列的性质可得,得,,因此,.故答案为.本题考查随机分布列的性质、以及数学期望的计算与性质,灵活利用这些性质和相关公式是解题的关键,属于基础题.14、【解析】分析:根据已知条件,分别在和中计算,在用余弦定理计算.详解:连接,由题可知,,,,,,则在中,由正弦定理得为等腰直角三角形,则在中,由余弦定理得故答案为.点睛:解三角形的应用问题,先将实际问题抽象成三角形问题,再合理选择三角形以及正、余弦定理进行计算.15、【解析】由已知得到展开式的通项为:,令r=12,得到常数项为;故答案为:18564.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.16、【解析】
根据三视图可知几何体为圆锥,利用底面半径和高可求得母线长;根据圆锥侧面积公式可直接求得结果.【详解】由三视图可知,几何体为底面半径为,高为的圆锥圆锥的母线长为:圆锥的侧面积:本题正确结果:本题考查圆锥侧面积的求解问题,关键是能够根据三视图准确还原几何体,考查学生对于圆锥侧面积公式的掌握情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的普通方程为,曲线的直角坐标方程为;(2).【解析】
(1)直接利用参数方程和极坐标方程公式得到答案.(2)计算圆心到直线的距离,判断相离,再利用公式得到答案.【详解】解:(1)直线的普通方程为,曲线的直角坐标方程为(2)曲线的圆心到直线的距离所以直线与圆相离,则曲线上的点到直线的距离的最小值为本题考查了参数方程和极坐标方程,将圆上的点到直线的距离转化为圆心到直线的距离是解题的关键.18、(1)有;(2).【解析】
(1)计算与5.024比较,即可判断是否有的把握认为选代数题还是几何题与性别有关.(2)显然,可直接利用公式计算数学期望和方差.【详解】(1)由列联表知故有97.5%的把握认为选代数题还是几何题与性别有关(2)由表知20位女生选几何题的频率为,故;.本题主要考查独立性检验统计思想,二项分布的数学期望和方差的计算.意在考查学生的计算能力,阅读理解能力和分析能力,难度不大.19、(1)(2)【解析】
(1)利用,结合向量知识,可得的轨迹方程,结合双曲线方程,即可得到点到轴的距离.(2)用坐标表示向量,利用向量的数量积建立函数关系式,根据双曲线的范围,可求得的取值范围.【详解】(1)设点为,,而,,则,,,.,,即,整理,得①又,在双曲线上,②联立①②,得,即因此点到轴的距离为.(2)设的坐标为,,则的坐标为,,.的取值范围是,.本题主要考查向量的运算,考查双曲线中点的坐标的求法和范围问题的解法,意在考查学生对这些知识的理解掌握水平.20、(1),(2),【解析】试题分析:(1)可考虑用定积分求两曲线围成的封闭图形面积,直线OP的方程为y=tx,则S1为直线OP与曲线y=x2当x∈(0,t)时所围面积,所以,S1=∫0t(tx﹣x2)dx,S2为直线OP与曲线y=x2当x∈(t,2)时所围面积,所以,S2=∫t2(x2﹣tx)dx,再根据S1=S2就可求出t值.(Ⅱ)由(2)可求当S1+S2,化简后,为t的三次函数,再利用导数求最小值,以及相应的x值,就可求出P点坐标为多少时,S1+S2有最小值.试题解析:(1)设点P的横坐标为t(0<t<2),则P点的坐标为(t,t2),直线OP的方程为y=txS1=∫0t(tx﹣x2)dx=,S2=∫t2(x2﹣tx)dx=,因为S1=S2,,所以t=,点P的坐标为(2)S=S1+S2==S′=t2﹣2,令S'=0得t2﹣2=0,t=因为0<t<时,S'<0;<t<2时,S'>0所以,当t=时,Smin=,P点的坐标为.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西方公共权力的运作机制考察试题及答案
- 测试工具的使用规范试题及答案
- 网络工程师成长路径试题及答案
- 西方国家的反对派在政治中的角色试题及答案
- 机电工程问题剖析试题及答案
- 社会变革中的国际视角与本土实践试题及答案
- 西方技术革新对政治制度的影响考题试题及答案
- 机电工程综合性考核题解析试题及答案
- 网络工程师试题及答案分析方法
- 机电工程风险管理试题及答案
- 2025年中国金融押运行业发展监测及投资战略规划研究报告
- 2025年高三语文八省联考作文题目解析及范文:“做一种劳作做到圆满”
- 形势与政策2000字论文2篇
- 安徽省六安市2024-2025学年高一上学期期末考试数学试题(含解析)
- 锂离子电池项目立项申请报告范文范本
- 农机安全隐患排查清单
- DB45T 1644-2017 假肢装配机构假肢配置路径的制定与实施
- 中国科学院大学《机器学习》2021-2022学年第一学期期末试卷
- 长安汽车购车合同范例
- 劳动合同法-终结性考核-国开(SC)-参考资料
- 幼儿园绘本故事《三只小猪盖房子》教学课件全文
评论
0/150
提交评论