上海市黄浦区格致中学2025届数学高二下期末统考模拟试题含解析_第1页
上海市黄浦区格致中学2025届数学高二下期末统考模拟试题含解析_第2页
上海市黄浦区格致中学2025届数学高二下期末统考模拟试题含解析_第3页
上海市黄浦区格致中学2025届数学高二下期末统考模拟试题含解析_第4页
上海市黄浦区格致中学2025届数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市黄浦区格致中学2025届数学高二下期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,且,若能被100整除,则等于()A.19 B.91 C.18 D.812.已知Y=5X+1,E(Y)=6,则E(X)的值为A.1 B.5 C.6 D.73.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c4.直线被椭圆截得的弦长是()A. B. C. D.5.已知e1,e2是单位向量,且e1⋅e2=0,向量a与eA.定值-1 B.定值1C.最大值1,最小值-1 D.最大值0,最小值-16.数列中,,(),那么()A.1 B.-2 C.3 D.-37.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y(单位:千瓦·时)与气温x(单位:oC)之间的关系,随机选取了4天的用电量与当天气温,x(单位:oC171410-1y(单位:千瓦•时)24343864由表中数据得线性回归方程:y=-2x+a,则由此估计:当某天气温为12oC时,A.56千瓦•时 B.36千瓦•时 C.34千瓦•时 D.38千瓦•时8.“夫叠棋成立积,缘幂势既同,则积不容异”是以我国哪位数学家命名的数学原理()A.杨辉 B.刘微 C.祖暅 D.李淳风9.甲、乙、丙、丁、戊五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为()A.72种 B.52种 C.36种 D.24种10.函数的单调递减区间是()A. B. C., D.,11.已知平面α与平面β相交,a是α内的一条直线,则()A.在β内必存在与a平行的直线 B.在β内必存在与a垂直的直线C.在β内必不存在与a平行的直线 D.在β内不一定存在与a垂直的直线12.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量.若与共线,则在方向上的投影为________.14.函数在闭区间上的最大值为__________.15.以下个命题中,所有正确命题的序号是______.①已知复数,则;②若,则③一支运动队有男运动员人,女运动员人,用分层抽样的方法从全体运动员中抽取一个容量为的样本,则样本中男运动员有人;④若离散型随机变量的方差为,则.16.四个整数1,3,3,5的方差为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)参与舒城中学数学选修课的同学对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图.定价x(元/千克)102030405060年销量y(千克)115064342426216586z=2lny14.112.912.111.110.28.9参考数据:,.(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).(3)当定价为150元/千克时,试估计年销量.附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回归直线x+的斜率和截距的最小二乘估计分别为18.(12分)给出如下两个命题:命题,;命题已知函数,且对任意,,,都有,求实数的取值范围,使命题为假,为真.19.(12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中7件是一等品,3件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,(i)记一等品的件数为,求的分布列;(ii)求这三件产品都不能通过检测的概率.20.(12分)设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.21.(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)若点,在曲线上,求的值.22.(10分)一个口袋内有个不同的红球,个不同的白球,(1)从中任取个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

将化为,根据二巷展开式展开后再根据余数的情况进行分析后可得所求.【详解】由题意得,其中能被100整除,所以要使能被100整除,只需要能被100整除.结合题意可得,当时,能被100整除.故选A.整除问题是二项式定理中的应用问题,解答整除问题时要关注展开式的最后几项,本题考查二项展开式的应用,属于中档题.2、A【解析】分析:根据题意及结论得到E(X)=详解:Y=5X+1,E(Y)=6,则E(X)=故答案为A.点睛:这个题目考查的是期望的计算,两个变量如果满足线性关系,.3、D【解析】

∵a=log54<log55=1,b=(log53)2<(log55)2=1,c=log45>log44=1,所以c最大单调增,所以又因为所以b<a所以b<a<c.故选D.4、A【解析】

直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长.【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A.本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题.5、A【解析】

由题意可设e1=(1,0),e【详解】由题意设e1=(1,0),e2=(0,1)所以a-所以(x-1)2又a-2所以数量积a⋅故选:A.本题考查平面向量基本定理以及模长问题,用解析法,设出向量的坐标,用坐标运算会更加方便。6、A【解析】∵,∴,即,∴,∴,∴是以6为周期的周期数列.∵2019=336×6+3,∴.故选B.7、B【解析】

计算出x和y的值,将点x,y的坐标代入回归直线方程,得出a的值,再将x=12代入可得出【详解】由题意可得x=17+14+10-14由于回归直线过样本的中心点x,y,则-2×10+a回归直线方程为y=-2x+60,当x=12时,y=-2×12+60=36(千瓦·本题考查回归直线方程的应用,解题的关键在于利用回归直线过样本中心点x,8、C【解析】

由题意可得求不规则几何体的体积的求法,即运用祖暅原理.【详解】“夫叠棋成立积,缘幂势既同,则积不容异”的意思是“夹在两平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果两个截面面积仍然相等,那么这两个几何体的体积相等”,这就是以我国数学家祖暅命名的数学原理,故选:C.本题考查祖暅原理的理解,考查空间几何体体积的求法,考查对概念的理解,属于基础题.9、C【解析】

当丙在第一或第五位置时,有种排法;当丙在第二或第四位置时,有种排法;当丙在第三或位置时,有种排法;则不同的排法种数为36种.10、A【解析】

函数的单调减区间就是函数的导数小于零的区间,可以求出函数的定义域,再算出函数的导数,最后解不等式,可得出函数的单调减区间.【详解】解:因为函数,所以函数的定义域为,求出函数的导数:,;令,,解得,所以函数的单调减区间为故选:.本题考查了利用导数研究函数的单调性,属于简单题,在做题时应该避免忽略函数的定义域而导致的错误.11、B【解析】分析:由题意可得,是内的一条直线,则可能与平面和平面的交线相交,也有可能不相交,然后进行判断详解:在中,当与平面和平面的交线相交时,在内不存在与平行的直线,故错误在中,平面和平面相交,是内一条直线,由线面垂直的性质定理得在内必存在与垂直的直线,故正确在中,当与平面和平面的交线平行时,在内存在与平行的直线,故错误在中,由线面垂直的性质定理得在内必存在与垂直的直线,故错误故选点睛:本题主要考查的是空间中直线与平面之间的位置关系、直线与直线的位置关系,需要进行分类讨论,将可能出现的情况列举出来,取特例来判断语句的正确性12、A【解析】

分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用共线向量的坐标表示求出参数,再依据投影的概念求出结果即可.【详解】∵∴.又∵与共线,∴,∴,∴,∴在方向上的投影为.本题主要考查共线向量的坐标表示以及向量投影的概念,注意投影是个数量.14、3【解析】

先求出函数的导数,在闭区间上,利用导数求出函数的极值,然后与进行比较,求出最大值.【详解】,当时,,函数单调递增,当时,,函数单调递减,所以是函数的极大值点,即,,,所以函数在闭区间上的最大值为3.本题考查了闭区间上函数的最大值问题.解决此类问题的关键是在闭区间上先利用导数求出极值,然后求端点的函数值,最后进行比较,求出最大值.15、①③④【解析】

根据复数的模的运算可知,①正确;代入,,所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确.【详解】①,则,①正确;②令,则;令,则,②错误;③抽样比为:,则男运动员应抽取:人,③正确;④由方差的性质可知:,④正确.本题正确结果:①③④本题考查命题的真假性的判断,涉及到复数模长运算、二项式系数和、分层抽样、方差的性质等知识,属于中档题.16、2【解析】

由方差公式,将数据代入运算即可.【详解】解:因为1,3,3,5的平均数为,由方差公式可得,故答案为:2.本题考查了平均数及方差公式,重点考查了运算能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)z与x具有较强的线性相关性(2)(3)估计年销量为=1千克【解析】

由散点图可知z与x对应的散点图基本都在一条直线附近,线性相关性更强根据公式计算出回归方程的系数,即可写出回归方程代入回归方程求出年销量【详解】(1)由散点图知,z与x具有较强的线性相关性.(2)∵≈-0.10,∴≈15,∴x+=15-0.10x.又∵z=2lny,∴y关于x的回归方程为.(3)当定价为150元/千克时,估计年销量为=1千克.本题考查了线性回归方程及其应用,只需理清题目中的数据,代入公式即可求出线性回归方程,然后求出年销量,较为基础18、【解析】

判断命题的否定为真时,实数的取值范围,从而得到命题为真时实数的取值范围,化简不等式可知只需在上是减函数。取绝对值讨论在不同区间内的解集即可。【详解】由已知,若命题,,是真命题令则在区间没有零点令,可得,其对称轴为要使得在区间没有零点即解得实数的取值范围为则当命题p为真时,因为,所以,。设,依题意,在上是减函数,。①当时,

,。令,得:对恒成立。设,则。因为,所以。所以在上是增函数,则当时,有最大值为,所以。②当时,

,。令,得:。设,则,所以在上是增函数。所以,所以。综合①②,又因为在上是图形连续不断的,所以。故若q为真,则则p真q假为则q真p假综上本题主要考查了转化化归的思想以及导数的应用,存在性的命题可将其转化为否定命题,进而得到原命题的真假,属于难题.19、(1)(2)(ⅰ)见解析(ⅱ)见解析【解析】

(1)设随机选取一件产品,能通过检测的事件为,,事件等于事件“选取一等品都通过或者选取二等品通过检测”,由此能求出随机选取1件产品,能够通过检测的概率;(2)(i)随机变量的取值有:0,1,2,3,分别求出其概率即可.(ii)设随机选取3件产品都不能通过检测的事件为,事件等于事件“随机选取3件产品都是二等品且都不能通过检测”,由此能求这三件产品都不能通过检测的概率.【详解】(1)设随机选取一件产品,能通过检测的事件为,事件等于事件“选取一等品都通过或者选取二等品通过检测”,则.(2)(i)的可能取值为.,,,.故的分布列为0123(ii)设随机选取3件产品都不能通过检测的事件为,事件等于事件“随机选取3件产品都是二等品且都不能通过检测”,所以本题考查等可能事件的概率,考查离散型随机变量的分布列,,考查独立重复试验的概率公式,本题是一个概率的综合题目.20、(1)m=1(2)【解析】

试题分析:(1)零点分区间去掉绝对值,得到分段函数的表达式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论