




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴三中2025届高二下数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,,是的中点,若,则().A. B. C. D.2.下列命题中,真命题是()A. B.C.的充要条件是 D.是的充分条件3.数列,满足,,,则数列的前项和为().A. B. C. D.4.有位同学按照身高由低到高站成一列,现在需要在该队列中插入另外位同学,但是不能改变原来的位同学的顺序,则所有排列的种数为()A. B. C. D.5.已知随机变量,的分布列如下表所示,则()123123A., B.,C., D.,6.如图是某陀螺模型的三视图,则该陀螺模型的体积为()A. B.C. D.7.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3, ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.48.已知函数f(x)=(mx﹣1)ex﹣x2,若不等式f(x)<0的解集中恰有两个不同的正整数解,则实数m的取值范围()A. B.C. D.9.已知,,的实部与虚部相等,则()A.2 B. C.2 D.10.已知函数,若,,,则,,的大小关系是()A. B. C. D.11.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C. D.12.正方体中,若外接圆半径为,则该正方体外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有甲、乙、丙三项不同任务,甲需由人承担,乙、丙各需由人承担,从人中选派人承担这三项任务,不同的选法共有__________种.(用数字作答)14.已知复数,,若为纯虚数,则_____.15.已知向量,,且在上的投影为3,则与夹角为__________.16.已知实数x,y满足条件,则z=x+3y的最小值是_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知18.(12分)已知函数的最大值为4.(1)求实数的值;(2)若,求的最小值.19.(12分)(学年上海市杨浦区高三数学一模)如图所示,用总长为定值的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为,垂直于墙的边长为,试用解析式将表示成的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?20.(12分)“蛟龙号”从海底中带回某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验是失败的.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)若甲乙两小组各进行2次试验,求两个小组试验成功至少3次的概率.21.(12分)大型综艺节目,《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的根据调查显示,是否喜欢盲拧魔方与性别有关为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如表所示,并邀请其中20名男生参加盲拧三阶魔方比赛,其完成情况如表所示.(Ⅰ)将表补充完整,并判断能否在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关?(Ⅱ)现从表中成功完成时间在和这两组内的6名男生中任意抽取2人对他们的盲拧情况进行视频记录,求2人成功完成时间恰好在同一组内的概率.附参考公式及数据:,其中.22.(10分)被嘉定著名学者钱大昕赞誉为“国朝算学第一”的清朝数学家梅文鼎曾创造出一类“方灯体”,“灯者立方去其八角也”,如图所示,在棱长为的正方体中,点为棱上的四等分点.(1)求该方灯体的体积;(2)求直线和的所成角;(3)求直线和平面的所成角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,即可得出结论.【详解】解:如图,设,,,,在中,由正弦定理可得,代入数据解得,故,而在中,,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,,故选:D.本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属于中档题.2、D【解析】A:根据指数函数的性质可知恒成立,所以A错误.
B:当时,,所以B错误.
C:若时,满足,但不成立,所以C错误.D:则,由充分必要条件的定义,,是的充分条件,则D正确.
故选D.3、D【解析】
由题意是数列是等差数列,数列的等比数列,分别求出它们的通项,再利用等比数列前项和公式即可求得.【详解】因为,,所以数列是等差数列,数列的等比数列,因此,,数列的前项和为:.故选:.本题主要考查的是数列的基本知识,等差数列、等比数列的通项公式以及等比数列的求和公式的应用,是中档题.4、C【解析】
将问题转化为将这个同学中新插入的个同学重新排序,再利用排列数的定义可得出答案.【详解】问题等价于将这个同学中新插入的个同学重新排序,因此,所有排列的种数为,故选C.本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.5、C【解析】
由题意分别求出Eξ,Dξ,Eη,Dη,由此能得到Eξ<Eη,Dξ>Dη.【详解】由题意得:Eξ,Dξ.Eη,Dη=()2(2)2(3)2,∴Eξ<Eη,Dξ=Dη.故选:C.本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.6、C【解析】
几何体上部分为圆柱,下部分为圆锥,代入体积公式计算即可.【详解】解:几何体上部分为圆柱,下部分为圆锥,
其中圆柱的底面半径为1,高为2,圆锥的底面半径为1,高为1,所以几何体的体积.
故选:C.本题考查了常见几何体的三视图与体积的计算,属于基础题.7、B【解析】
①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.8、C【解析】
令,化简得,构造函数,画出两个函数图像,结合两个函数图像以及不等式解的情况列不等式组,解不等式组求得的的取值范围.【详解】有两个正整数解即有两个不同的正整数解,令,,故函数在区间和上递减,在上递增,画出图像如下图所示,要使恰有两个不同的正整数解等价于解得故,选C.本小题主要考查不等式解集问题,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.9、C【解析】
利用待定系数法设复数z,再运用复数的相等求得b.【详解】设(),则即.故选C.本题考查用待定系数法,借助复数相等建立等量关系,是基础题.10、D【解析】
可以得出,从而得出c<a,同样的方法得出a<b,从而得出a,b,c的大小关系.【详解】,,根据对数函数的单调性得到a>c,,又因为,,再由对数函数的单调性得到a<b,∴c<a,且a<b;∴c<a<b.故选D.考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.11、B【解析】
解析:考察均值不等式,整理得即,又,12、C【解析】
设正方体的棱长为,则是边长为的正三角形,求得其外接圆的半径,求得的值,进而求得球的半径,即可求解球的表面积,得到答案.【详解】如图所示,设正方体的棱长为,则是边长为的正三角形,设其外接圆的半径为,则,即,由,得,所以正方体的外接球的半径为,所以正方体的外接球的表面积为,故选C.本题主要考查了求得表面积与体积的计算问题,同时考查了组合体及球的性质的应用,其中解答中根据几何体的结构特征,利用球的性质,求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】分析:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人。详解:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人(乙、丙派的人不一样故要排列)。共有60种。点睛:分配问题,先分组(组合)后分派(排列)。14、【解析】
化简,令其实部为0,可得结果.【详解】因为,且为纯虚数,所以,即.本题主要考查复数的除法运算以及复数为纯虚数的等价条件.15、【解析】
根据投影公式,求得,进而得到,再由夹角公式得解.【详解】解:因为,,,由公式在上的投影为得,,求解得,所以,即由向量夹角公式,因为则与夹角.故答案为:.本题考查平面向量的数量积及投影公式的运用,考查向量夹角的求法,考查逻辑推理能力及运算求解能力,属于基础题.16、-5【解析】作可行域,则直线z=x+3y过点A(1,-2)取最小值-5点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
把z1、z2代入关系式,化简即可【详解】,复数的运算,难点是乘除法法则,设,则,.18、(1);(2).【解析】【试题分析】(1)利用绝对值不等式,消去,可求得实数的值.(2)由(1)得.利用配凑法,结合基本不等式可求得最小值.【试题解析】(1)由,当且仅当且当时取等号,此时取最大值,即;(2)由(1)及可知,∴,则,(当且仅当,即时,取“=”)∴的最小值为4.19、(1),;(2)时,.【解析】(1)设平行于墙的边长为,则篱笆总长,即,∴场地面积,.(2),,∴当且仅当时,.综上,当场地垂直于墙的边长为时,最大面积为.20、(1);(2)【解析】
(1)“三次试验中至少两次试验成功”是指三次试验中,有2次试验成功或3次试验全部成功,先计算出2次与3次成功的概率,相加即可得到所要求的概率.(2)分成功3次,4次两种情况求其概率相加即可【详解】(1)设“甲小组做了三次实验,至少两次试验成功”为事件A,则其概率为.(2)设“甲乙两小组试验成功3次”为事件B,则,设“甲乙两小组试验成功4次”为事件C,则,故两个小组试验成功至少3次的概率为.本题考查概率的求法,考查n次独立重复试验某事件恰好发生k次的概率、相互独立事件的概率乘法公式,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.21、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)根据总人数和表格中的数据可以完成,计算卡方观测值,结合卡方观测值所在区间判定;(Ⅱ)根据古典概型的求解方法求解.【详解】解:Ⅰ依题意,补充完整的表1如下:喜欢盲拧不喜欢盲拧总计男23730女91120总计321850由表中数据计算的观测值为所以能在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关.(Ⅱ)从成功完成时间在和这两组内的6名男生中任意抽取2人,基本事件总数为种,这2人恰好在同一组内的基本事件为种,故所求的概率为.本题主要考查独立性检验和古典概率的求解,侧重考查数据分析,数学建模和数学运算的核心素养.22、(1);(2);(3).【解析】
(1)计算出八个角(即八个三棱锥)的体积之和,然后利用正方体的体积减去这八个角的体积之和即可得出方灯体的体积;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共政策对青少年成长的支持试题及答案
- 跨国经验对公共政策局势的启示试题及答案
- 项目管理中的成果与评估试题及答案
- 网络工程师考试真题深度解析试题及答案
- 公共政策分析中的定量研究方法运用试题及答案
- 西方政治制度中的社会公平试题及答案
- 政策分析的基本工具与方法试题及答案
- 机电工程考试全智攻略与试题及答案
- 机电工程综合考试模拟题试题及答案2025
- 软件设计师考试分析能力试题及答案
- 基于《山海经》神祇形象的青少年解压文具设计研究
- 教育与美好人生知到智慧树章节测试课后答案2024年秋郑州师范学院
- DB15T 3727-2024温拌再生沥青混合料超薄磨耗层碳排放核算技术规程
- 2025年新高考历史预测模拟试卷黑吉辽蒙卷(含答案解析)
- 传染病疫情报告制度及报告流程
- DBJ50-T -212-2015 机制排烟气道系统应用技术规程
- 世界读书日主题班会模板5
- 水库建设投资估算与资金筹措
- 金属雕花板保温施工方案
- 涉密计算机保密培训
- T-GXAS 767-2024 尿液中汞的测定 氢化物发生原子荧光法
评论
0/150
提交评论