




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
深圳市第二高级中学2024-2025学年数学高二下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线2.如图,分别为棱长为的正方体的棱的中点,点分别为面对角线和棱上的动点,则下列关于四面体的体积正确的是()A.该四面体体积有最大值,也有最小值 B.该四面体体积为定值C.该四面体体积只有最小值 D.该四面体体积只有最大值3.下列关于回归分析的说法中,正确结论的个数为()(1)回归直线必过样本点中;(2)残差图中残差点所在的水平带状区域越宽,则回归方程的预报精度越高;(3)残差平方和越小的模型,拟合效果越好;(4)用相关指数来刻画回归效果,越大,说明模型的拟合效果越好.A.4 B.3 C.2 D.14.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.5.若复数满足,则的虚部为A. B. C.1 D.6.在椭圆内,通过点,且被这点平分的弦所在的直线方程为()A. B.C. D.7.若且;则的展开式的系数是()A. B. C. D.8.设复数z=1+i(i是虚数单位),则复数z+1A.12 B.12i C.9.函数f(x)=|x|-ln|x|,若[f(x)]2-mf(x)+3=0有A.(23,4) B.(2,4) C.(2,210.已知函数在区间上为单调函数,且,则函数的解析式为()A. B.C. D.11.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.312.设为可导函数,且满足,则曲线在点处的切线斜率为()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”外接球表面积为________14.一个竖直平面内的多边形,用斜二测画法得到的水平放置的直观图是一个边长为的正方形,该正方形有一组对边是水平的,则原多边形的面积是______.15.已知函数f(x)=x3﹣3x+1,则函数y=f(x)的单调递减区间是_____16.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.18.(12分)已知函数.(1)求;(2)求的极值点.19.(12分)已知的内角A的大小为,面积为.(1)若,求的另外两条边长;(2)设O为的外心,当时,求的值.20.(12分)某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:汽车行驶路线在不堵车的情况下到达城市乙所需时间(天)在堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1142公路2231(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?(注:毛收入=销售商支付给厂家的费用-运费).21.(12分)已知函数.(1)若不等式在上有解,求的取值范围;(2)若对任意的均成立,求的最小值.22.(10分)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)过椭圆的右焦点作互相垂直的两条直线、,其中直线交椭圆于两点,直线交直线于点,求证:直线平分线段.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由代入消去参数t得又所以表示线段。故选A2、D【解析】
易证,从而可推出面积为定值,则只需研究点到平面的距离的取值范围即可得到四面体体积的取值范围【详解】分别为棱长为的正方体的棱的中点,所以,又,故点到的距离为定值,则面积为定值,当点与点重合时,为平面构不成四面体,故只能无限接近点,当点与点重合时,有最大值,体积有最值,所以四面体体积有最大值,无最小值故选D本题主要考查了四面体体积的判断,运动中的定量与变量的分析,空间想象与转化能力,属于中档题3、B【解析】
利用回归分析的相关知识逐一判断即可【详解】回归直线必过样本点中,故(1)正确残差图中残差点所在的水平带状区域越窄,则回归方程的预报精度越高,故(2)错误残差平方和越小的模型,拟合效果越好,故(3)正确用相关指数来刻画回归效果,越大,说明模型的拟合效果越好,故(4)正确所以正确结论的个数为3故选:B本题考查的是回归分析的相关知识,较简单.4、D【解析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.5、A【解析】,虚部为.【考点】复数的运算与复数的定义.6、A【解析】试题分析:设以点为中点的弦的端点分别为,则,又,两式相减化简得,即以点为中点的弦所在的直线的斜率为,由直线的点斜式方程可得,即,故选A.考点:直线与椭圆的位置关系.7、C【解析】
先根据求出,再代入,直接根据的展开式的第项为,即可求出展开式的系数。【详解】因为且所以展开式的第项为展开式中的系数为故选C本题考查二项式展开式,属于基础题。8、A【解析】由z=1+i,得z+1z=1+i+9、A【解析】
方程有8个不相等的实数根指存在8个不同x的值;根据函数f(x)的图象,可知方程[f(x)]2-mf(x)+3=0必存在2个大于1【详解】∵f(x)=∵f(-x)=f(x),∴函数f(x)为偶函数,利用导数可画出其函数图象(如图所示),若[f(x)]2-mf(x)+3=0有8个不相等的实数根⇔关于∴Δ=与复合函数有关的函数或方程问题,要会运用整体思想看问题;本题就是把所求方程看成是关于f(x)的一元二次方程,再利用二次函数根的分布求m的范围.10、C【解析】
由函数在区间上为单调函数,得周期,,得出图像关于对称,可求出,,得出函数的对称轴,结合对称中心和周期的范围,求出周期,即可求解.【详解】设的最小正周期为,在区间上具有单调性,则,即,由知,有对称中心,所以.由,且,所以有对称轴.故.解得,于是,解得,所以.故选:C本题考查正弦函数图象的对称性、单调性和周期性及其求法,属于中档题.11、C【解析】
根据向量三角形法则求出t,再求出向量的数量积.【详解】由,,得,则,.故选C.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.12、D【解析】
由导数的几何意义,结合题设,找到倍数关系,即得解.【详解】由导数的几何意义,可知:故选:D本题考查了导数的几何意义和导数的定义,考查了学生概念理解,转化划归,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由三视图还原几何体,可知该几何体为四棱锥,底面ABCD为矩形,.求出PC长度,可得四棱锥外接球的半径,代入球的表面积公式即可求得.【详解】由三视图还原几何体如图,该几何体为四棱锥,底面ABCD为矩形,,该几何体外接球的半径为.该“阳马”外接球表面积为.故答案为:.本题考查三视图还原几何体,考查几何体外接球的表面积,难度较易.14、【解析】
根据斜二测画法可知,原图形中的高在直观图中变为原来的,直观图中的高变为原高的,原来的平面图形与直观图的面积比是:1,计算即可.【详解】该多边形的直观图是一个边长为的正方形,正方形的面积为,原多边形的面积是.故答案为.本题主要考查了斜二测画法,原图形与直观图面积的关系,属于中档题.15、【解析】
求得函数的导数,利用导数的符号,即可求解,得到答案.【详解】由题意,函数,则,令,即,解得,所以函数的单调递减区间为,故答案为:.本题主要考查了利用研究函数的单调性,求解函数的单调区间,其中解答中熟记导数与原函数的关系式解答的关键,着重考查了推理与运算能力,属于基础题.16、A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)把边的关系转化成角,对于求边的取值范围很有帮助试题解析:(1)由,得,所以,则,由,。(2)由(1)得,即,又为锐角三角形,故从而.由,所以所以,所以因为所以即考点:余弦定理的变形及化归思想18、(1);(2)极大值点为,极小值点为.【解析】
(1)求出,将代入即可.(2)先在定义域内求出的值,再讨论满足的点附近的导数的符号的变化情况,来确定极值;【详解】解:(1)因为,所以.(2)的零点为或,当时,,所以在上单调递减;当时,,在,上单调递增,所以的极大值点为,极小值点为.本题主要考查了导数计算,利用导数研究函数的极值,以及函数的零点等有关基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.19、(1),;(2)或【解析】
(1)由三角形面积公式得到AC边,再由余弦定理即可得出BC边;(2)由(1)可知,利用余弦定理可求,设的中点为,则,结合为的外心,可得,从而可求得.【详解】(1)设的内角A,B,C的对边分别为a,b,c,于是,所以因为,所以.由余弦定理得.(2)由得,即,解得或4.设的中点为D,则,因为O为的外心,所以,于是.所以当时,,;当时,,.本题主要考查三角形的面积公式及余弦定理的应用以及向量的基本运算和性质的应用.属于中档题.20、(1)分布列见解析,;(2)选择公路2运送啤酒有可能让啤酒厂获得的毛收入更多.【解析】
(1)若汽车走公路1,不堵车时啤酒厂获得的毛收人(万元),堵车时啤酒厂获得的毛收入(万元),然后列出分布列和求出(2)当时,由(1)知(万元),然后求出,比较二者的大小即可得出结论.【详解】解:(1)若汽车走公路1,不堵车时啤酒厂获得的毛收人(万元),堵车时啤酒厂获得的毛收入(万元),所以汽车走公路1时啤酒厂获得的毛收入X的分布列为4034∴.(2)当时,由(1)知(万元),当时,设汽车走公路2时啤酒厂获得的毛收入为Y,则不堵车时啤酒厂获得的毛收入9(万元),堵车时啤酒厂获得的毛收入(万元),∴汽车走公路2时啤酒厂获得的毛收入Y的分布列为3937∴(万元),由得选择公路2运送啤酒有可能让啤酒厂获得的毛收入更多.本题考查的是随机变量的分布列和期望,较简单,属于基础题;由于文字太多,解答本题的关键是读懂题意.21、(1);(2).【解析】
(1)先求的最大值,然后通过不等式寻找的范围.(2)由(1)知当时,,这样可得,于是由且,得,可放大为,放缩的目的是为了和可求.因此的范围可得.【详解】(1),由定理可知,函数的单调递增区间为,递减区间为.故,由题意可知,当,解得,故;当,由函数的单调性,可知在恒单调增,且恒大于零,故无解;综上:;(2)当时,,,,且,,,,的最小值为.本题考查用导数研究证明不等式,研究不等式恒成立问题.解题中一要求有较高的转化与化归能力,二要求有较高的运算求解能力.第(1)小题中在解不等式时还要用到分类讨论的思想,第(2)小题用到放缩法,而且这里的放缩的理论根据就是由第(1)小题中函数的性质确定的,发现问题解决问题的能力在这里要求较高,本题难度较大.22、(1)(2)见证明【解析】
(1)利用,得到,然后代入点即可求解(2)设直线,以斜率为核心参数,与椭圆联立方程,把两点全部用参数表示,得出的中点坐标为,然后再求出直线的方程,代入的中点即可证明成立【详解】(1)由得,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- r语言笔试题目及答案
- 2025年现代汉语应用能力考试试题及答案
- 2025年房地产经济学与政策考试题及答案
- 2025年公共管理专业考试试题及答案
- 显微鉴别试题及答案
- java异常面试题及答案w
- 儿科自考试题及答案
- 乡村医生考试试题及答案
- 环境政策对可再生能源的影响试题及答案
- 软件设计师考试难题详细解析试题及答案
- 土地勘测定界技术说明
- 初中 初一 音乐 第二单元 影视金曲《长江之歌》 长江之歌 课件
- 装修人员出入证
- 行车日常检查表
- 元素周期表(空白版)
- 2021年江苏海事职业技术学院教师招聘笔试题目及答案
- 国家开放大学《社会心理适应》章节随学随练参考答案
- 水泥库筒仓滑模施工方案
- 华容道关卡(三张A3纸)
- 标准型号链条参数表-链节参数表
- TCCES 6003-2021 预制混凝土构件用金属预埋吊件
评论
0/150
提交评论