云南省玉溪市元江县一中2025届高二下数学期末联考试题含解析_第1页
云南省玉溪市元江县一中2025届高二下数学期末联考试题含解析_第2页
云南省玉溪市元江县一中2025届高二下数学期末联考试题含解析_第3页
云南省玉溪市元江县一中2025届高二下数学期末联考试题含解析_第4页
云南省玉溪市元江县一中2025届高二下数学期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市元江县一中2025届高二下数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的函数,且对于任意,不等式恒成立,则整数的最小值为()A.1 B.2 C.3 D.42.将函数的图象向左平移个单位后得到函数的图象如图所示,则函数的解析式是()A.() B.()C.() D.()3.在直角坐标系中,以为极点,轴正半轴为极轴,建立极坐标系,直线的参数方程为(为参数),曲线的方程为,直线与曲线相交于两点,当的面积最大时,()A. B. C. D.4.已知定义在上的连续奇函数的导函数为,当时,,则使得成立的的取值范围是()A. B. C. D.5.若关于的不等式有解,则实数的取值范围是()A. B.C. D.6.已知随机变量服从二项分布,则().A. B. C. D.7.如图是函数的导函数的图象,给出下列命题:①-2是函数的极值点;②是函数的极值点;③在处取得极大值;④函数在区间上单调递增.则正确命题的序号是A.①③ B.②④ C.②③ D.①④8.用反证法证明命题:“若实数,满足,则,全为0”,其反设正确的是()A.,至少有一个为0 B.,至少有一个不为0C.,全不为0 D.,全为09.“所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理()A.大前提错误 B.小前提错误C.结论错误 D.正确10.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()A.种 B.种 C.种 D.种11.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.12.已知函数的零点为,函数的零点为,则下列不等式中成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校生物研究社共人,他们的生物等级考成绩如下:人分,人分,人分,人分,则他们的生物等级考成绩的标准差为________.14.先阅读下面的文字:“求的值时,采用了如下的方式:令,则有,两边平方,可解得(负值舍去)”.那么,可用类比的方法,求出的值是__________.15.在正三棱锥中,,,记二面角,的平面角依次为,,则______.16.已知,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,,.(1)求三棱柱的体积;(2)若点M是棱AC的中点,求直线与平面ABC所成的角的大小.18.(12分)一个盒子里装有个均匀的红球和个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为.(1)求,的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.19.(12分)设复数,复数.(Ⅰ)若,求实数的值.(Ⅱ)若,求实数的值.20.(12分)在平面直角坐标系中,直线与抛物线相交于不同的两点.(1)如果直线过抛物线的焦点,求的值;(2)如果,证明直线必过一定点,并求出该定点.21.(12分)已知曲线的极坐标方程为(1)若以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,求曲线的直角坐标方程;(2)若是曲线上一个动点,求的最大值,以及取得最大值时点的坐标.22.(10分)设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

利用的单调性和奇偶性,将抽象不等式转化为具体不等式,然后将恒成立问题转化成最值问题,借助导数知识,即可解决问题.【详解】,可知,且单调递增,可以变为,即,∴,可知,设,则,当时,,当时,单调递增;当时,单调递减,可知,∴,∵,∴整数的最小值为1.故选A.本题主要考查了函数的性质、抽象不等式的解法、以及恒成立问题的一般解法,意在考查学生综合运用所学知识的的能力.2、A【解析】设,由的图像可知,函数的周期为,所以,将代入得,所以,向右平移后得到.3、D【解析】

先将直线直线与曲线转化为普通方程,结合图形分析可得,要使的面积最大,即要为直角,从而求解出。【详解】解:因为曲线的方程为,两边同时乘以,可得,所以曲线的普通方程为,曲线是以为圆心,2为半径的上半个圆.因为直线的参数方程为(为参数),所以直线的普通方程为,因为,所以当为直角时的面积最大,此时到直线的距离,因为直线与轴交于,所以,于是,所以,故选D。本题考查了曲线的参数方程、极坐标方程与普通方程之间的互化,同时考查了直线与圆的位置关系,数形结合是本题的核心思想。4、C【解析】

根据时可得:;令可得函数在上单调递增;利用奇偶性的定义可证得为偶函数,则在上单调递减;将已知不等式变为,根据单调性可得自变量的大小关系,解不等式求得结果.【详解】当时,令,则在上单调递增为奇函数为偶函数则在上单调递减等价于可得:,解得:本题正确选项:本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.5、A【解析】

先将不等式转化为,然后构造函数,只要小于的最大值即可【详解】解:由,得,令,则当时,;当时,所以在上单调递增,在上单调递减所以当时,取最大值,所以故选:A此题考查了利用导数研究函数的单调性和最值,属于中档题6、D【解析】表示做了次独立实验,每次试验成功概率为,则.选.7、D【解析】分析:由条件利用导函数的图象特征,利用导数研究函数的单调性和极值,逐一判断各个选项是否正确,从而得出结论.详解:根据导函数y=f′(x)的图象可得,y=f′(x)在(﹣∞,﹣2)上大于零,在(﹣2,2)、(2,+∞)上大于零,且f′(﹣2)=0,故函数f(x)在(﹣∞,﹣2)上为减函数,在(﹣2,+∞)、(2,+∞)上为增函数.故﹣2是函数y=f(x)的极小值点,故①正确;故1不是函数y=f(x)的极值点,故②不正确;根据函数-1的两侧均为单调递增函数,故-1不是极值点.根据y=f(x)=在区间(﹣2,2)上的导数大于或等于零,故f(x)在区间(﹣2,2)上单调递增,故④正确,故选:D.点睛:本题主要考查命题真假的判断,利用导数研究函数的单调性和极值,属于中档题.导函数的正负代表了原函数的单调性,极值点即导函数的零点,但是必须是变号零点,即在零点两侧正负相反;极值即将极值点代入原函数取得的函数值,注意分清楚这些概念.8、B【解析】

反证法证明命题时,首先需要反设,即是假设原命题的否定成立即可.【详解】因为命题“若实数,满足,则,全为0”的否定为“若实数,满足,则,至少有一个不为0”;因此,用反证法证明命题:“若实数,满足,则,全为0”,其反设为“,至少有一个不为0”.故选B本题主要考查反证的思想,熟记反证法即可,属于常考题型.9、D【解析】

分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论.详解:∵所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,∴这个推理是正确的,故选D.点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.10、A【解析】根据题意,要求有4个空车位连在一起,则将4个空车位看成一个整体,将这个整体与8辆不同的车全排列,有种不同的排法,即有种不同的停车方法;故选A.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.11、A【解析】

分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.12、C【解析】

根据零点存在性定理,可得,然后比较大小,利用函数的单调性,可得结果.【详解】由题意可知函数在上单调递增,,,∴函数的零点,又函数的零点,,故选:C本题考查零点存在性定理以及利用函数的单调性比较式子大小,难点在于判断的范围,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】

先求出样本的平均数,再求出其标准差.【详解】这八个人生物成绩的平均分为,所以这八个人生物成绩的标准差为故得解.本题考查样本的标准差,属于基础题.14、【解析】分析:利用类比的方法,设,则有,解方程即可得结果,注意将负数舍去.详解:设,则有,所以有,解得,因为,所以,故答案是.点睛:该题考查的是有关类比推理的问题,在解题的过程中,需要对式子进行分析,得到对应的关系式,求得相应的结果.15、1【解析】

作平面ABC,连接CO延长交AB于点D,连接可得D为AB的中点,,于是二面角的平面角为作,垂足为E点,连接BE,根据≌,可得可得为的平面角,利用余弦定理即可得出.【详解】如图所示,作平面ABC,连接CO延长交AB于点D,连接PD.则D为AB的中点,,.二面角的平面角为.,,,..作,垂足为E点,连接BE,≌,.为的平面角,..在中,..故答案为1.本题主要考查了正三棱锥的性质、正三角形的性质、余弦定理、勾股定理、二面角、三角形全等,属于难题.16、【解析】

根据二项式定理,,推导出,由,能求出.【详解】解:,,,由,解.故答案为1.本题考查实数值的求法,考查组合数公式等基础知识,考查推理能力与计算能力,考查函数与方程思想,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由直三棱柱ABC﹣A1B1C1中,∠ABC=60°,BB1=3,AB=1,BC=1.能求出三棱柱ABC﹣A1B1C1的体积.(2)点M是棱AC的中点,B1M在平面ABC的射影为直线MB,则∠B1MB就是直线B1M与平面ABC所成的角的大小,由此能求出直线B1M与平面ABC所成的角的大小.【详解】(1)∵在直三棱柱ABC﹣A1B1C1中,∠ABC=60°,BB1=3,AB=1,BC=1.∴三棱柱ABC﹣A1B1C1的体积:V12.(2)点M是棱AC的中点,B1M在平面ABC的射影为直线MB,则∠B1MB就是直线B1M与平面ABC所成的角的大小,tan∠B1MB,∴∠B1MB=arctan.∴直线B1M与平面ABC所成的角的大小为arctan.本题考查三棱锥的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1),(2)【解析】

(1)设该盒子里有红球个,白球个,利用古典概型、对立事件概率计算公式列出方程组,能求出,.(2)“一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率.【详解】解:(1)设该盒子里有红球个,白球个.根据题意得,解方程组得,,故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件.设“一次从盒子里任取3个球,取到的白球个数为3个”为事件,则设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件,则,故.因此,从盒子里任取3个球,取到的白球个数不少于红球个数的概率为.本题考查实数值、概率的求法,考查古典概型、对立事件概率计算公式、互斥事件概率加法公式等基础知识,考查理解能力、运算求解能力,属于中档题.19、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)先由复数的加法法则得出,再利用复数的乘方得出,并表示为一般形式,由虚部为零求出实数的值;(Ⅱ)解法1:利用复数的除法法则求出,并表示为一般形式,利用复数相等列方程组,求出实数与的值;解法2:由变形为,利用复数的乘法将等式左边复数表示为一般形式,再利用复数相等列方程组求出实数与的值.【详解】(Ⅰ)===因为,所以,,;(Ⅱ)解法1:,所以,因此,;解法2:,则,所以.本题考查复数相等求未知数,解题的关键就是利用复数的四则运算法则将复数表示为一般形式,明确复数的实部和虚部,再由复数列方程组求解即可,考查计算能力,属于基础题.20、(Ⅰ)-3(Ⅱ)过定点,证明过程详见解析.【解析】

Ⅰ根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系,表达出两个向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论