忻州一中2025年数学高二第二学期期末调研试题含解析_第1页
忻州一中2025年数学高二第二学期期末调研试题含解析_第2页
忻州一中2025年数学高二第二学期期末调研试题含解析_第3页
忻州一中2025年数学高二第二学期期末调研试题含解析_第4页
忻州一中2025年数学高二第二学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

忻州一中2025年数学高二第二学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,则下列结论中正确的是()A. B. C. D.2.集合,,则()A. B. C. D.3.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有A.5种 B.10种C.20种 D.120种4.函数y=sin2x的图象可能是A. B.C. D.5.设,则二项式展开式的常数项是()A.1120 B.140 C.-140 D.-11206.将函数图象上所有的点向左平移个单位,再将横坐标伸长为原来的2倍(纵坐标不变),得到的图象,则下列各式正确的是()A. B.C. D.7.已知函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.8.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是()A.甲和丁B.乙和丁C.乙和丙D.甲和丙9.已知集合,则集合的子集个数为()A.3 B.4 C.7 D.810.若二项式的展开式中二项式系数的和是64,则展开式中的常数项为A. B. C.160 D.24011.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列,则的值为()A.8 B.10 C.12 D.1612.若均为第二象限角,满足,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将集合中所有的数按照上小下大,左小右大的原则写成如下的三角形表:则该数表中,从小到大第50个数为__________.14.若的二项展开式中的第3项的二项式系数为15,则的展开式中含项的系数为__________.15.若直线与曲线有公共点,则的取值范围是______.16.,则使成立的值是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市房地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归直线方程;(2)若政府不调控,按照3月份至7月份房价的变化趋势预测12月份该市新建住宅的销售均价.参考数据:参考公式:.18.(12分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到数据如表所示(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):常喝不常喝合计肥胖28不肥胖18合计30(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.0.0500.0103.8416.635参考数据:附:19.(12分)如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台的上端点P处分别向水池内的三个不同方向建水滑道,,,水滑道的下端点在同一条直线上,,平分,假设水滑梯的滑道可以看成线段,均在过C且与垂直的平面内,为了滑梯的安全性,设计要求.(1)求滑梯的高的最大值;(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计,求该滑梯装置(即图(2)中的几何体)的体积最小值.20.(12分)如图,在三棱锥P-ABC中,,O是AC的中点,,,.(1)证明:平面平面ABC;(2)若,,D是AB的中点,求二面角的余弦值.21.(12分)设函数,.(1)求函数的单调递增区间;(2)若函数与在区间内恰有两个交点,求实数的取值范围.22.(10分)在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:(1)求点D到平面A1BE的距离;(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由题意首先求得集合B,然后逐一考查所给选项是否正确即可.【详解】求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项,故选C.本题主要考查集合的表示方法,集合之间的关系的判断等知识,熟记集合的基本运算方法是解答的关键,意在考查学生的转化能力和计算求解能力.2、B【解析】由,得,故选B.3、B【解析】

根据题意,可看做五个位置排列五个数,把“金、木、土、水、火”用“1,2,3,4,5”代替.根据相克原理,1不与2,5相邻,2不与1,3相邻,依次类推,用分布计数原理写出符合条件的情况.【详解】把“金、木、土、水、火”用“1,2,3,4,5”代替.1不与2,5相邻,2不与1,3相邻,所以以“1”开头的排法只有“1,3,5,2,4”或“1,4,2,5,3”两种,同理以其他数开头的排法都是2种,所以共有种.选B.本题考查分步计数原理的应用,考查抽象问题具体化,注重考查学生的思维能力,属于中档题.4、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.5、A【解析】

分析:利用微积分基本定理求得,先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式的常数项.详解:由题意,二项式为,设展开式中第项为,,令,解得,代入得展开式中可得常数项为,故选A.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.6、C【解析】

根据平移得到,函数关于点中心对称,得到答案.【详解】根据题意:,故,取,故.故函数关于点中心对称,由,则故,则正确,其他选项不正确.故选:.本题考查了三角函数平移,中心对称,意在考查学生对于三角函数知识的综合应用.7、A【解析】

令,这样原不等式可以转化为,构造新函数,求导,并结合已知条件,可以判断出的单调性,利用单调性,从而可以解得,也就可以求解出,得到答案.【详解】解:令,则,令,则,在上单调递增,,故选A.本题考查了利用转化法、构造函数法、求导法解决不等式解集问题,考查了数学运算能力和推理论证能力.8、B【解析】

从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁答案选B真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证9、D【解析】分析:先求出集合B中的元素,从而求出其子集的个数.详解:由题意可知,集合B={z|z=x+y,x∈A,y∈A}={0,1,2},则B的子集个数为:23=8个,故选D.点睛:本题考察了集合的子集个数问题,若集合有n个元素,其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.10、D【解析】

由二项式定义得到二项展开式的二项式系数和为,由此得到,然后求通项,化简得到常数项,即可得到答案.【详解】由已知得到,所以,所以展开式的通项为,令,得到,所以展开式的常数项为,故选D.本题主要考查了二项展开式的二项式系数以及特征项的求法,其中熟记二项展开式的系数问题和二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.11、C【解析】

数列,是等比数列,公比为2,前7项和为1016,由此可求得首项,得通项公式,从而得结论.【详解】最下层的“浮雕像”的数量为,依题有:公比,解得,则,,从而,故选C.本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.12、B【解析】

利用同角三角函数的基本关系求得cosα和sinβ的值,两角和的三角公式求得cos(α+β)的值.【详解】解:∵sinα,cosβ,α、β均为第二象限角,∴cosα,sinβ,∴cos(α+β)=cosαcosβ-sinαsinβ•(),故答案为B本题主要考查同角三角函数的基本关系,两角和的余弦公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1040【解析】用表示,下表的规律为:…,则第行的第个数,,故答案为.【方法点睛】本题归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.14、160【解析】分析:根据题意,结合二项式定理可得,再利用二项式通项公式即可.详解:由二项式定理,的二项展开式中的第3项的二项式系数为,有,解得.则有,当时,得,的展开式中含项的系数为160.故答案为:160.点睛:本题考查二项式系数的性质,要注意区分某一项的系数与某一项的二项式系数的区别.15、【解析】

由曲线y=3+,得(x﹣2)2+(y﹣3)2=4,0≤x≤4,直线y=x+b与曲线y=3+有公共点,圆心(2,3)到直线y=x+b的距离d不大于半径r=2,由此结合图象能求出实数b的取值范围.【详解】由曲线y=3+,得(x﹣2)2+(y﹣3)2=4,0≤x≤4,∵直线y=x+b与曲线y=3+有公共点,∴圆心(2,3)到直线y=x+b的距离d不大于半径r=2,即∵0≤x≤4,∴x=4代入曲线y=3+,得y=3,把(4,3)代入直线y=x+b,得bmin=3﹣4=﹣1,②联立①②,得.∴实数b的取值范围是[﹣1,1+2].故答案为.本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.16、-4或2【解析】

当0时,;当时,.由此求出使成立的值.【详解】,当0时,解得当时,,解得故答案为-4或2.本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)销售均价约为1.52万元/平方米【解析】分析:(1)由题意,计算,,求出,,即可写出回归方程;(2)利用(1)中回归方程,计算时的值即可.详解:(1)月份34567均价0.950.981.111.121.20计算可得,,,所以,,所以关于的回归直线方程为.(2)将代入回归直线方程得,所以预测12月份该市新建住宅的销售均价约为1.52万元/平方米.点睛:本题考查了回归直线方程的求法与应用问题,正确计算是解题的关键.18、(1)见解析;(2)有99%的把握认为肥胖与常喝碳酸饮料有关.【解析】分析:(1)先根据条件计算常喝碳酸饮料肥胖的学生人数,再根据表格关系填表,(2)根据卡方公式求,再与参考数据比较作判断.详解:(1)设常喝碳酸饮料肥胖的学生有人,.常喝不常喝合计肥胖628不胖41822合计102030(2)由已知数据可求得:因此有99%的把握认为肥胖与常喝碳酸饮料有关.点睛:本题考查卡方公式以及列联表,考查基本求解能力.19、(1)m(2)562.5.【解析】

(1)分别设出CB、CA、PC的长,分别表示出面积,再利用不等关系求解即可;(2)利用已知条件,求得体积是关于x的函数,再利用导函数判别单调性求得最小值即可.【详解】(1)设.由题意知,由及平分得,所以.因为,所以,所以.所以滑道的高的最大值为m.(2)因为滑道的坡度为,所以.由(1)知,即.又,所以.所以三棱锥P-ABC的体积,所以,当时,单调递减,当时,单调递增,所以当时,,所以该滑梯装置的体积最小为562.5m³.本题考查了解三角形和立体几何应用实际问题,熟悉题意,仔细分析,结合导函数的应用求最值是解题的关键,属于中档题目.20、(1)证明见解析;(2)【解析】

(1)利用PO⊥AC,OP2+OB2=PB2,即PO⊥OB.可证明PO⊥面ABC,即可得平面PAC⊥平面ABC;(2)由(1)得PO⊥面ABC,过O作OM⊥CD于M,连接PM,则∠PMO就是二面角P﹣CD﹣B的补角.解三角形POM即可.【详解】(1)∵AP=CP,O是AC的中点,∴PO⊥AC,∵PO=1,OB=2,.∴OP2+OB2=PB2,即PO⊥OB.∵AC∩OB=O,∴PO⊥面ABC,∵PO⊂面PAC,∴平面PAC⊥平面ABC;(2)由(1)得PO⊥面ABC,过O作OM⊥CD于M,连接PM,则∠PMO就是二面角P﹣CD﹣B的平面角的补角.∵OC1,∴AC=2,AB,∴CD.∴S△COD∴,∴OM.PM.∴∴二面角P﹣CD﹣B的余弦值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论