




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川大学附属中学2024-2025学年高二数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的一个单调增区间是()A. B. C. D.2.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是()A.30 B.31 C.32 D.343.已知函数是定义在上的奇函数,对任意的都有,当时,则()A. B. C. D.4.某小区的6个停车位连成一排,现有3辆车随机停放在车位上,则任何两辆车都不相邻的停放方式有()种.A.24 B.72 C.120 D.1445.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)6.已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为()A.(-1,4) B.(-2,0) C.(-1,0) D.(-1,2)7.假设如图所示的三角形数表的第行的第二个数为,则()A.2046 B.2416 C.2347 D.24868.设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则实数a的值为A.5 B.3 C.53 D.9.给定空间中的直线及平面,条件“直线上有两个不同的点到平面的距离相等”是“直线与平面平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件10.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y(单位:千瓦·时)与气温x(单位:oC)之间的关系,随机选取了4天的用电量与当天气温,x(单位:oC171410-1y(单位:千瓦•时)24343864由表中数据得线性回归方程:y=-2x+a,则由此估计:当某天气温为12oC时,A.56千瓦•时 B.36千瓦•时 C.34千瓦•时 D.38千瓦•时11.2019年5月31日晚,大连市某重点高中举行一年一度的毕业季灯光表演.学生会共安排6名高一学生到学校会议室遮挡4个窗户,要求两端两个窗户各安排1名学生,中间两个窗户各安排两名学生,不同的安排方案共有()A.720 B.360 C.270 D.18012.若执行如图所示的程序框图,则输出S的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则__________.14.正四面体的所有棱长都为2,则它的体积为________.15.如图所示,在三棱锥中,若,,是的中点,则下列命题中正确的是_______(填序号).①平面平面;②平面平面;③平面平面,且平面平面;④平面平面,且平面平面.16.设为的展开式中含项的系数,为的展开式中二项式系数的和,则能使成立的的最大值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.广告投入/万元12345销售收益/万元23257(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示与之间存在线性相关关系,求关于的回归方程;(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.附:,18.(12分)已知函数().(Ⅰ)若在处的切线过点,求的值;(Ⅱ)若恰有两个极值点,().(ⅰ)求的取值范围;(ⅱ)求证:.19.(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.20.(12分)如图,是通过某城市开发区中心O的两条南北和东西走向的街道,连结M,N两地之间的铁路线是圆心在上的一段圆弧,若点M在点O正北方向3公里;点N到的距离分别为4公里和5公里.(1)建立适当的坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点O的正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4公里,并且铁路上任意一点到校址的距离不能小于公里,求该校址距点O的最短距离(注:校址视为一个点)21.(12分)某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;(2)已知该厂现有名维修工人.(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?22.(10分)已知复数为虚数单位.(1)若复数对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
对函数在每个选项的区间上的单调性进行逐一验证,可得出正确选项.【详解】对于A选项,当时,,所以,函数在区间上不单调;对于B选项,当时,,所以,函数在区间上单调递增;对于C选项,当时,,所以,函数在区间上单调递减;对于D选项,当时,,所以,函数在区间上单调递减.故选:B.本题考查正弦型函数在区间单调性的判断,一般利用验证法进行判断,即求出对象角的取值范围,结合正弦函数的单调性进行判断,考查推理能力,属于中等题.2、B【解析】每个图形中火柴棒的根数构成一个等差数列,首项为4,公差为3.其数列依次为4,7,10,13,…,所以第10个图形中火柴棒的根数为.3、C【解析】
根据得出周期,通过周期和奇函数把化在上,再通过周期和奇函数得.【详解】由,所以函数的周期因为是定义在上的奇函数,所以所以因为当时,,所以所以.选择C本题主要考查了函数的奇偶性质以及周期.若为奇函数,则满足:1、,2、定义域包含0一定有.若函数满足,则函数周期为.属于基础题.4、A【解析】分析:根据题意,首先排好三辆车,在三辆车中间插入两个空位使三辆车任何两辆车都不相邻,最后一个空车位利用插空法即可.详解:根据题意,首先排好三辆车,共种,在三辆车中间插入两个空位使三辆车任何两辆车都不相邻,最后把剩下的空车位插入空位中,则有种,由分步计数原理,可得共有种不同的停车方法.点睛:本题考查排列、组合的综合应用,注意空位是相同的.5、A【解析】
不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。6、A【解析】
根据函数的奇偶性和周期性将条件进行转化,利用不等式的解法即可得到结论.【详解】∵f(x)是定义在R上的以3为周期的偶函数,∴f(5)=f(5﹣6)=f(﹣1)=f(1),∴由f(1)<1,f(5)=,得f(5)=<1,即﹣1<0,<0,即(a﹣4)(a+1)<0,解得:﹣1<a<4,故选:A.本题主要考查不等式的解法,利用函数的奇偶性和周期性进行转化是解决本题的关键.7、B【解析】
由三角形数表特点可得,利用累加法可求得,进而得到结果.【详解】由三角形数表可知:,,,…,,,整理得:,则.故选:.本题考查数列中的项的求解问题,关键是能够采用累加法准确求得数列的通项公式.8、D【解析】
根据正态分布的特征,可得2a-3+a+2=6,求解即可得出结果.【详解】因为随机变量ξ服从正态分布N3,4,P根据正态分布的特征,可得2a-3+a+2=6,解得a=7故选D本题主要考查正态分布的特征,熟记正态分布的特征即可,属于基础题型.9、B【解析】分析:利用直线与平面平行的定义判断即可.详解:直线上有两个不同的点到平面的距离相等,如果两点在平面同侧,则;如果两点在平面异侧,则与相交:反之,直线与平面平行,则直线上有两个不同的点到平面的距离相等.故条件“直线上有两个不同的点到平面的距离相等”是“直线与平面平行”的必要非充分条件.故选B.点睛:明确:则是的充分条件,,则是的必要条件.准确理解线面平行的定义和判定定理的含义,才能准确答题.10、B【解析】
计算出x和y的值,将点x,y的坐标代入回归直线方程,得出a的值,再将x=12代入可得出【详解】由题意可得x=17+14+10-14由于回归直线过样本的中心点x,y,则-2×10+a回归直线方程为y=-2x+60,当x=12时,y=-2×12+60=36(千瓦·本题考查回归直线方程的应用,解题的关键在于利用回归直线过样本中心点x,11、D【解析】
由题意分两步进行,第一步为在6名学生中任选2名安排在两端两个窗户,可得方案数量,第二步为将剩余的6名学生平均分成2组,全排列后安排到剩下的2个窗户,两者方案数相乘可得答案.【详解】解:根据题意,分两步进行:①在6名学生中任选2名安排在两端两个窗户,有中情况;②将剩余的6名学生平均分成2组,全排列后安排到剩下的2个窗户,有种情况,则一共有种不同的安排方案,故选:D.本题主要考查排列、组合及简单的计数问题,相对不难,注意运算准确.12、C【解析】
首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:对函数的解析式求导,得到其导函数,把代入导函数中,列出关于的方程,进而得到的值.详解:因为,所以,令,得到,解得,故答案为.点睛:本题主要考查了导数的运算,运用求导法则得出函数的导函数,意在考查对基础知识掌握的熟练程度,属于基础题.14、.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.考点:多面体的体积.15、③【解析】
由AB=BC,AD=CD,说明对棱垂直,推出平面ABC⊥平面BDE,且平面ADC⊥平面BDE,即可得出结论.【详解】因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,故答案为:③.本题考查了平面与平面垂直的判定,考查学生分析解决问题的能力,属于基础题.16、4【解析】
由题意可得,An==,,若使得An≥Bn,即n(n+1)≥2n,可求.【详解】∵(1+x)n+1的展开式的通项为Tr+1,由题意可得,An==,又∵为的展开式中二项式系数的和,∴,∵An≥Bn,∴,即n(n+1)≥2n当n=1时,1×2≥2,满足题意;当n=2时,2×3≥22,满足题意;当n=3时,3×4≥23,满足题意;当n=4时,4×5≥24,满足题意;当n=5时,5×6<25,不满足题意,且由于指数函数比二次函数增加的快,故当n≥5时,n(n+1)<2n,∴=4.故答案为4本题主要考查了二项展开式的通项公式的应用,二项展开式的性质应用及不等式、指数函数与二次函数的增加速度的快慢的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).(3).【解析】分析:(Ⅰ)设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可得,从而可得结果;(Ⅱ)利用平均数公式求出平均数、利用样本中心的性质结合公司可求得回归系数,从而可写出线性回归方程;(Ⅲ)计算当时,销售收益预测值,再求残差值.详解:(Ⅰ)设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可知,故.(Ⅱ)由题意,可知,,,,根据公式,可求得,,所以关于的回归方程为.(Ⅲ)当时,销售收益预测值(万元),又实际销售收益为万元,所以残差点睛:求回归直线方程的步骤:①确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18、(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)见证明【解析】
(Ⅰ)对函数进行求导,然后求出在处的切线的斜率,求出切线方程,把点代入切线方程中,求出的值;(Ⅱ)(ⅰ),,,分类讨论函数的单调性;当时,可以判断函数没有极值,不符合题意;当时,可以证明出函数有两个极值点,,故可以求出的取值范围;由(ⅰ)知在上单调递减,,且,由得,,又,.法一:先证明()成立,应用这个不等式,利用放缩法可以证明出成立;法二:令(),求导,利用单调性也可以证明出成立.【详解】解:(Ⅰ),又在处的切线方程为,即切线过点,(Ⅱ)(ⅰ),,,当时,,在上单调递增,无极值,不合题意,舍去当时,令,得,(),或;,在上单调递增,在上单调递减,在上单调递增,恰有个极值点,,符合题意,故的取值范围是(ⅱ)由(ⅰ)知在上单调递减,,且,由得,,又,法一:下面证明(),令(),,在上单调递增,,即(),,综上法二:令(),则,在上单调递增,,即,综上本题考查了曲线切线方程的求法,考查了函数有极值时求参数取值范围问题,考查了利用导数研究函数的性质.19、(1)分布列见解析.(2)分布列见解析;元.【解析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140×(15﹣10)﹣(150﹣140)×(10﹣8)=680元,则P(X=680)==0.1.若A水果日需求量不小于150千克,则X=150×(15﹣10)=750元,且P(X=750)=1﹣0.1=0.2.由此能求出X的分布列和数学期望E(X).详解:(1)的分布列为(2)若水果日需求量为千克,则元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.20、(1)(;(2).【解析】
(1)以垂直的直线为轴建立平面直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗用品牙科管理制度
- 公司禁烟禁火管理制度
- 大学采购外协管理制度
- 劳动关系解除管理制度
- 商场清洁日常管理制度
- 工程分包资料管理制度
- 室内种植植物管理制度
- 关于工地材料管理制度
- 商业运营服务管理制度
- 公司财务库房管理制度
- 《基于PLC的包装机控制系统设计实现》10000字(论文)
- 地铁安检机考试题及答案
- 泰康之家管理体系
- 输电线路工程绿色施工方案
- 粤语试题测试题及答案
- 2025年浙江省金华市义乌市六年级下学期5月模拟预测数学试题含解析
- 高压均质及热处理改性鹰嘴豆蛋白对减磷猪肉糜凝胶特性的影响机制
- 人效提升方案
- 2025春-新版一年级语文下册生字表(200个)
- 期末易错题型创新改编练习(专项练习)六年级下册数学人教版
- 《桥梁工程概况介绍》课件
评论
0/150
提交评论