2026版《优化设计大一轮》高考数学(优化设计新高考版)第2节空间点、直线、平面之间的位置关系_第1页
2026版《优化设计大一轮》高考数学(优化设计新高考版)第2节空间点、直线、平面之间的位置关系_第2页
2026版《优化设计大一轮》高考数学(优化设计新高考版)第2节空间点、直线、平面之间的位置关系_第3页
2026版《优化设计大一轮》高考数学(优化设计新高考版)第2节空间点、直线、平面之间的位置关系_第4页
2026版《优化设计大一轮》高考数学(优化设计新高考版)第2节空间点、直线、平面之间的位置关系_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2节空间点、直线、平面之间的位置关系高考总复习优化设计GAOKAOZONGFUXIYOUHUASHEJI2026强基础•固本增分研考点•精准突破目录索引0102课标解读1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.掌握四个基本事实和一个定理.3.能运用基本事实、定理和已获得的结论,证明一些空间位置关系的简单命题.强基础•固本增分知识梳理1.与平面及平行线有关的基本事实及推论(1)平面及平行线的基本事实事实图形文字语言符号语言基本事实1

上的三个点,有且只有一个平面

当三个点共线时,过这三点的平面有无数个A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α基本事实2

如果一条直线上的

在一个平面内,那么这条直线在这个平面内

A∈l,B∈l,且A∈α,B∈α⇒l⊂α

不能写成“⊆”不在一条直线两个点事实图形文字语言符号语言基本事实3

是寻找两相交平面的交线以及证明“线共点”的理论依据如果两个不重合的平面有一个公共点,那么它们

过该点的公共直线

P∈α,且P∈β

⇒α∩β=l,且P∈l基本事实4

平行于同一条直线的两条直线平行若直线a∥b,c∥b,则a∥c有且只有一条(2)平面的基本事实的3个推论

推论自然语言图形语言推论1经过一条直线与

一点,有且只有一个平面

注意点A不在直线上推论2经过两条

直线,有且只有一个平面

推论3经过两条

直线,有且只有一个平面

这条直线外相交平行微思考“有且只有一个平面”“确定一个平面”“共面”三者之间有何区别与联系?提示

“确定一个平面”与“有且只有一个平面”是等价的,都包括“存在”和“唯一”两个方面.但“共面”的意思是“在同一个平面内”,只强调了“存在性”,不含“唯一性”.所以“共面”与前两者是不同的.2.空间中直线与直线的位置关系

相交平行误区警示

1.不能误解为分别在两个平面内的两条直线为异面直线.必须满足不同在“任何”一个平面内.2.异面直线不具有传递性.即若直线a与b异面,b与c异面,则a与c不一定是异面直线.3.空间中直线与平面、平面与平面的位置关系

a∩α=A1a∥α0a⊂α无数α∥β0α∩β=l无数4.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角

.[教材知识深化]如果两个角的两边平行且方向都相同或都相反,则两角相等;若一边同向,另一边反向,则两角互补.相等或互补

自主诊断一、基础自测1.思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)(1)如果两个平面有三个公共点,则这两个平面重合.(

)(2)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(

)(3)两个平面α,β有一个公共点A,就说α,β相交于点A,记作α∩β=A.(

)(4)已知a,b是异面直线,直线c平行于直线a,则c与b不可能是平行直线.

(

)×××√2.(人教A版必修第二册习题8.4第2(2)题)若直线a不平行于平面α,且a⊄α,则下列结论成立的是(

)A.α内的所有直线与a是异面直线B.α内不存在与a平行的直线C.α内存在唯一一条直线与a平行D.α内的所有直线与a都相交B解析

由题意可知直线a与平面α相交,所以平面α内所有直线与a相交或异面,且α内不存在与直线a平行的直线.故A,C,D不正确.3.(人教B版必修第四册11.3.1节练习A第2题改编)已知空间中两个角α,β,且角α与角β的两边分别平行,若α=70°,则β=

.70°或110°解析

根据等角定理,知α=β或α+β=180°,则β=70°或110°.

D

研考点•精准突破考点一与平面有关的基本事实的应用例1已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于点R,则P,Q,R三点共线;(3)DE,BF,CC1三线交于一点.证明

(1)如图所示,连接B1D1.因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体AC1中,因为AA1∥CC1,所以AA1与CC1确定一个平面α,设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.所以Q是α与β的公共点.同理,P是α与β的公共点,所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,即R∈α,且R∈β.则R∈PQ,故P,Q,R三点共线.(3)因为EF∥BD,且EF<BD,所以DE与BF相交.设交点为M,则由M∈DE,DE⊂平面D1DCC1,得M∈平面D1DCC1,同理,点M∈平面B1BCC1.又平面D1DCC1∩平面B1BCC1=CC1,所以M∈CC1,所以DE,BF,CC1三线交于点M.[对点训练1]如图,在正四棱台ABCD-A1B1C1D1中,E,F,G,H分别为棱A1B1,B1C1,AB,BC的中点.证明:(1)E,F,G,H四点共面;(2)GE,FH,BB1相交于一点.证明

(1)连接AC,A1C1,如图所示.因为ABCD-A1B1C1D1为正四棱台,所以A1C1∥AC.又E,F,G,H分别为棱A1B1,B1C1,AB,BC的中点,所以EF∥A1C1,GH∥AC,则EF∥GH,所以E,F,G,H四点共面.(2)因为A1C1≠AC,所以EF≠GH,所以四边形EFHG为梯形,则EG与FH必相交.设EG∩FH=P,因为EG⊂平面AA1B1B,所以P∈平面AA1B1B.因为FH⊂平面BB1C1C,所以P∈平面BB1C1C.又平面AA1B1B∩平面BB1C1C=BB1,所以P∈BB1,则GE,FH,BB1相交于一点.考点二空间两条直线的位置关系判断例2(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列说法正确的是(

)A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交D解析

(方法一

反证法)由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交.(方法二

模型法)如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.故选D.图1图2(2)(多选题)(2024·陕西西安高一期中)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,则下列四个结论正确的是(

)A.直线AM与CC1是相交直线 B.直线AM与BN是平行直线C.直线BN与MB1是异面直线 D.直线AM与DD1是异面直线CD解析

对于A,因为点A在平面C1D1DC外,点M在平面C1D1DC内,直线CC1在平面C1D1DC内,CC1不过点M,所以AM与CC1是异面直线,故A错误;对于B,直线AM在平面ABC1D1内,直线BN与平面ABC1D1相交于点B,点B不在直线AM上,所以直线AM与BN是异面直线,故B错误;对于C,直线BN在平面BCC1B1内,直线MB1与平面BCC1B1相交于点B1,点B1不在直线BN上,所以直线BN与直线MB1是异面直线,故C正确;对于D,因为点M与DD1都在平面C1D1DC内,点A在平面C1D1DC外,DD1不过点M,所以AM与DD1是异面直线,故D正确.故选CD.考点三异面直线所成的角

D

规律方法求两条异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论