珠海市重点中学2025届数学高二下期末学业水平测试模拟试题含解析_第1页
珠海市重点中学2025届数学高二下期末学业水平测试模拟试题含解析_第2页
珠海市重点中学2025届数学高二下期末学业水平测试模拟试题含解析_第3页
珠海市重点中学2025届数学高二下期末学业水平测试模拟试题含解析_第4页
珠海市重点中学2025届数学高二下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

珠海市重点中学2025届数学高二下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象上,有且只有三个不同的点,它们关于直线的对称点落在直线上,则实数的取值范围是()A. B.C. D.2.点A、B在以PC为直径的球O的表面上,且AB⊥BC,AB=2,BC=4,若球O的表面积是24π,则异面直线PB和AC所成角余弦值为()A.33 B.32 C.103.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.164.已知在R上是奇函数,且A.-2 B.2 C.-98 D.985.已知复数(其中为虚数单位),则A. B. C. D.6.已知,函数,若对任意给定的,总存在,使得,则的最小值为()A. B. C.5 D.67.如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取出一个小正方体,记它的油漆面数为,则的均值()A. B. C. D.8.已知集合,则()A. B. C. D.9.下列命题中,假命题是()A.不是有理数 B.C.方程没有实数根 D.等腰三角形不可能有的角10.与曲线相切于处的切线方程是(其中是自然对数的底)()A. B. C. D.11.已知函数,若函数的图象与轴的交点个数不少于2个,则实数的取值范围是()A. B.C. D.12.已知函数是定义在上的奇函数,且,当时,,则()A.2 B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.用数学归纳法证明时,由的假设到证明时,等式左边应添加的式子是__________.14.若ax2+的展开式中x5的系数是—80,则实数a=_______.15.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.16.若的展开式中的系数是,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系xOy中,直线l的参数方程为x=1+255ty=1+55t(t为参数),以(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)点P1,1,直线l与曲线C交于A,B两点,若PA⋅PB18.(12分)把6本不同的书,全部分给甲,乙,丙三人,在下列不同情形下,各有多少种分法?(用数字作答)(Ⅰ)甲得2本;(Ⅱ)每人2本;(Ⅲ)有1人4本,其余两人各1本.19.(12分)(坐标系与参数方程选做题)在极坐标系中,过点(22,π4)20.(12分)在锐角中,角的对边分别为,中线,满足.(1)求;(2)若,求周长的取值范围.21.(12分)如图,直三棱柱中,侧面为正方形,,是的中点,是的中点.(1)证明:平面平面;(2)若,求二面角的余弦值.22.(10分)已知函数.(1)若,求函数的单调区间;(2)若的极小值点,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

可先求关于的对称直线,联立对称直线和可得关于x的函数方程,采用分离参数法以及数形结合的方式进行求解即可【详解】设直线关于的对称函数为,则,因为与有三个不同交点,联立,可得,当时显然为一解,当时,有,画出的图像,可知满足与有两交点需满足综上所述,实数的取值范围是答案选D本题考察了直线关于对称直线的求法,函数零点中分离参数、数形结合、分类讨论等基本知识,对数学思维转化能力要求较高,特别是分离参数与数形结合求零点问题,是考察重点2、C【解析】

首先作出图形,计算出球的半径,通过几何图形,找出异面直线PB和AC所成角,通过余弦定理即可得到答案.【详解】设球O的半径为R,则4πR2=24π,故R=6,如图所示:分别取PA,PB,BC的中点M,N,E,连接MN,NE,ME,AE,易知,PA⊥平面ABC,由于AB⊥BC,所以AC=AB2+BC2=25,所以PA=PC2-AC2=2,因为E为BC的中点,则AE=AB2+BE2=2cos∠MNE=MN2+NE2-M本题主要考查外接球的相关计算,异面直线所成角的计算.意在考查学生的空间想象能力,计算能力和转化能力,难度较大.3、B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.4、A【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2019)=-2.故选A5、B【解析】分析:根据复数的运算法则和复数的模计算即可.详解:,则.故选:B.点睛:复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.6、D【解析】分析:先化简函数的解析式得,再解方程f(x)=0得到,再分析得到,再讨论a=0的情况得到w的范围,再综合即得w的最小值.详解:当a≠0时,,由f(x)=0得,因为所以,根据三角函数的图像得只要coswx=1满足条件即可,这时,所以当a=0时,,令f(x)=0,所以coswx=0,须满足综合得故答案为:D.点睛:(1)本题主要考查三角恒等变换,考查函数的零点和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合思想方法.(2)解答本题的难点在讨论a≠0时,分析推理出.7、C【解析】分析:由题意知,分别求出相应的概率,由此能求出.详解:由题意知,;;;;.故选:C.点睛:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.8、C【解析】

利用对数函数的单调性对集合化简得x|0<x<1},然后求出A∩B即可.【详解】={x|0<x<2},∴A∩B={1},故选:C考查对数不等式的解法,以及集合的交集及其运算.9、D【解析】

根据命题真假的定义,对各选项逐一判定即可.【详解】解:.为无理数,故正确,.,故正确,.因为,即方程没有实根,故正确,.等腰三角形可能以为顶角,为底角,故错误,故选:.本题考查命题真假的判断,属于基础题.10、B【解析】

求出导函数,把代入导函数,可求出切线的斜率,根据的坐标和直线的点斜式方程可得切线方程.【详解】由可得,切线斜率,故切线方程是,即.故选B.本题主要考查利用导数求曲线切线方程,属于简单题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.11、C【解析】分析:根据的图象与轴的交点个数不少于2个,可得函数的图象与的交点个数不少于2个,在同一坐标系中画出两个函数图象,结合图象即可得到m的取值范围.详解:的图象与轴的交点个数不少于2个,函数的图象与函数的图象的交点个数不少于2个,函数,时,函数为指数函数,过点,时,函数,为对称轴,开口向下的二次函数.,为过定点的一条直线.在同一坐标系中,画出两函数图象,如图所示.(1)当时,①当过点时,两函数图象有两个交点,将点代入直线方程,解得.②当与相切时,两函数图象有两个交点.联立,整理得则,解得,(舍)如图当,两函数图象的交点个数不少于2个.(2)当时,易得直线与函数必有一个交点如图当直线与相切时有另一个交点设切点为,,切线的斜率,切线方程为切线与直线重合,即点在切线上.,解得由图可知,当,两函数图象的交点个数不少于2个.综上,实数的取值范围是故选C.点睛:本题考查函数零点问题,考查数形结合思想、转化思想及分类讨论的思想,具有一定的难度.利用函数零点的情况,求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解(2)分离参数后转化为函数的值域(最值)问题求解(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.12、B【解析】

由,可得,则函数是周期为8的周期函数,据此可得,结合函数的周期性与奇偶性,即可求解.【详解】根据题意,函数满足,则有,则函数是周期为8的周期函数,则,又由函数为奇函数,则,则,即;故选B.本题主要考查了函数的奇偶性与周期性的综合应用,其中解答中根据题设条件,求得函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据等式左边的特点,各项数字先递增再递减,分别写出与的结论,即可得到答案.详解:根据等式左边的特点,各项数字先递增再递减,得时,左边时,左边比较两式,等式左边应添加的式子是故答案为点睛:本题主要考查数学归纳法,由的假设到证明时,等式左边应添加的式子.14、-2【解析】试题分析:因为,所以由,因此【考点】二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项往往是考查的重点.本题难度不大,易于得分.能较好地考查考生的基本运算能力等.15、【解析】

试题分析:由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,所以考点:线性规划、最值问题.16、1【解析】

先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式中的项的系数,再根据的系数是列方程求解即可.【详解】展开式的的通项为,令,的展开式中的系数为,故答案为1.本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)x-2y+1=0,y2(Ⅱ)a=0或1.【解析】

(Ⅰ)利用极直互化公式即可把曲线C的极坐标方程化为普通方程,消去参数t求出直线的普通方程即可;(Ⅱ)联立直线方程和C的方程,结合二次函数的性质得到关于t的方程,由t的几何意义列方程,解出即可.【详解】(Ⅰ)∵C:ρsin∴ρy2而直线l的参数方程为x=1+255则l的普通方程是:x-2y+1=0;(Ⅱ)由(Ⅰ)得:y2=2ax①,l的参数方程为x=1+2将②代入①得:t2故t1由PA⋅PB解得:a=0或1.本题考查了极坐标方程,参数方程以及普通方程的转化,考查直线和曲线的位置关系,是一道常规题.18、(Ⅰ)240种(Ⅱ)90种(Ⅲ)90种【解析】

(Ⅰ)根据题意,分2步进行分析:①,在6本书中任选2本,分给甲,②,将剩下的4本分给乙、丙,由分步计数原理计算可得答案;(Ⅱ)根据题意,分2步进行分析:①,将6本书平均分成3组,②,将分好的3组全排列,分给甲乙丙三人,由分步计数原理计算可得答案;(Ⅲ)根据题意,分2步进行分析:①,在6本书中任选4本,分给三人中1人,②,将剩下的2本全排列,安排给剩下的2人,由分步计数原理计算可得答案;【详解】(Ⅰ)根据题意,分2步进行分析:①,在6本书中任选2本,分给甲,有C62=15种选法,②,将剩下的4本分给乙、丙,每本书都有2种分法,则有2×2×2×2=16种分法,则甲得2本的分法有15×16=240种;(Ⅱ)根据题意,分2步进行分析:①,将6本书平均分成3组,有15种分组方法,②,将分好的3组全排列,分给甲乙丙三人,有A33=6种情况,则有15×6=90种分法;(Ⅲ)根据题意,分2步进行分析:①,在6本书中任选4本,分给三人中1人,有C64×C31=45种分法,②,将剩下的2本全排列,安排给剩下的2人,有A22=2种情况,则有45×2=90种分法.本题考查排列、组合的应用,考查了分组分配问题的步骤,涉及分类、分步计数原理的应用,属于中档题.19、【解析】分析:由圆ρ=4sinθ化为x2+y2-4y=0详解:∵圆ρ=4sinθ,∵极坐标系中,点22,π在x2+y2-4y=0上,x2∴过点A(2,2)的圆x2+y2-4y=0的切线方程为:点睛:本题考查简单曲线的极坐标方程,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.20、(1);(2).【解析】

(1)利用,两边平方后,代入,利用余弦定理求得的值,进而求得.(2)利用正弦定理进行转化,结合三角函数值域的求法,求得周长的取值范围.【详解】(1)由于是三角形的中线,所以,两边平方并化简得,将代入上式得,故,所以.(2)由正弦定理得,而,所以的周长为,由于三角形是锐角三角形,所以,所以,所以,所以,也即三角形周长的取值范围是.本小题主要考查向量运算,考查余弦定理、正弦定理解三角形,考查辅助角公式,考查三角函数值域的求法,属于中档题.21、(1)证明见解析;(2).【解析】

(1)由题意可得平面即可得,再利用可以得到,由线面垂直判断定理可得平面,然后根据面面垂直判断定理可得结论;(2)先以点为原点建立空间直角坐标系,设,写出相关点的坐标,再求出平面的法向量和平面的法向量,由数量积公式求出二面角的余弦值.【详解】(1)∵三棱柱为直三棱柱,,∴平面,∴,∵是的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论