




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市静海区2025年数学高二第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若存在,使得不等式成立,则实数的最大值为()A. B. C. D.2.设地球的半径为R,在纬度为的纬线圈上有A,B两地,若这两地的纬线圈上的弧长为,则A,B两地之间的球面距离为()A. B. C. D.3.已知曲线C:y=,曲线C关于y轴的对称曲线C′的方程是()A.y=﹣ B.y=﹣ C.y= D.y=4.把函数的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是().A. B.C. D.5.在的展开式中,二项式系数最大的项的系数为()A. B. C. D.6.复数z满足z=2i1-iA.1-i B.1+2i C.1+i D.-1-i7.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.8.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,由图得到结论不正确的为()A.性别与是否喜欢理科有关B.女生中喜欢理科的比为C.男生不喜欢理科的比为D.男生比女生喜欢理科的可能性大些9.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f(x)由右表给出,则的值为()A.0 B.1 C.2 D.310.以下四个命题,其中正确的个数有()①由独立性检验可知,有的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程中,当解释变量每增加一个单位时,预报变量平均增加0.2个单位;④对分类变量与,它们的随机变量的观测值来说,越小,“与有关系”的把握程度越大.A.1 B.2 C.3 D.411.若y=fx在-∞,+∞可导,且lim△x→0fA.23 B.2 C.3 D.12.下列值等于1的积分是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若过抛物线的焦点,且倾斜角为的直线交抛物线于,,则__________.14.某校高一年级有名学生,其中女生人,按男女比例用分层抽样的方法从该年级学生中抽取一个容量为的样本,则应抽取的男生人数是__________.15.已知集合,,若,则实数的取值范围是_______.16.给出下列演绎推理:“自然数是整数,,所以是整数”,如果这是推理是正确的,则其中横线部分应填写___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)IC芯片堪称“国之重器”其制作流程异常繁琐,制作IC芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemensprocess)这一工艺技术进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片合格,没有使用该工艺的20片单晶的晶圆中有12片合格.(1)请填写2×2列联表并判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemensprocess)这一工艺技术有关?使用工艺不使用工艺合格合格不合格合计50(2)在得到单晶的晶圆后,接下来的生产制作还前对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程,如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,第四个环节生产正常的概率为34,且每个环节是否生产正常是相互独立的.前三个环节每个环节出错需要修复的费用均为20元,第四环节出错需要修复的费用为10元参考公式:K参考数据:P(0.150.100.050.0250.010.0050.001K2.0722.7063.8415.0246.6357.87910.82818.(12分)(1)已知,是虚数单位,若,是纯虚数,写出一个以为其中一根的实系数一元二次方程;(2)求纯虛数的平方根.19.(12分)已知抛物线C的顶点为原点,焦点F与圆的圆心重合.(1)求抛物线C的标准方程;(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;(3)若弦过焦点,求证:为定值.20.(12分)已知函数,其中,.(1)若,,求的值;(2)若,,求的最大值;(3)若,求证:.21.(12分)如图,在四面体中,,.(Ⅰ)证明:;(Ⅱ)若,,四面体的体积为2,求二面角的余弦值.22.(10分)已知函数.(1)若,求函数的最大值;(2)令,讨论函数的单调区间;(3)若,正实数满足,证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,则当时,,单调递减当时,,单调递增存在,成立,,故选点睛:本题利用导数求解不等式问题,在解答此类问题时的方法可以分离参量,转化为最值问题,借助导数,求出新函数的单调性,从而求出函数的最值,解出参量的取值范围,本题较为基础.2、D【解析】
根据纬线圈上的弧长为求出A,B两地间的径度差,即可得出答案。【详解】设球心为O,纬度为的纬线圈的圆心为O´,则∠O´AO=,∴O´A=OAcos∠O´AO=Rcos,设A,B两地间的径度差的弧度数为,则Rcos=,∴=,即A,B两地是⊙O´的一条直径的两端点,∴∠AOB=,∴A,B两地之间的球面距离为.答案:D.本题涉及到了地理相关的经纬度概念。学生需理解其基本概念,将题干所述信息转换为数学相关知识求解。3、A【解析】
设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解.【详解】设所求曲线上任意一点,则关于直线的对称的点在已知曲线,所以,故选A.本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、A【解析】
先根据左加右减的性质进行平移,再根据横坐标伸长到原来的2倍时的值变为原来的倍,得到答案.【详解】解:向左平移个单位,即以代,得到函数,再把所得图象上所有点的横坐标伸长到原来的2倍,即以代,得到函数:.故选:A.本题主要考查三角函数的变换,属于基础题.5、B【解析】
根据展开式中二项式系数最大的项是,由此求出它的系数.【详解】的展开式中,二项式系数最大的项是其系数为-1.
故选B..本题考查了二项式展开式系数的应用问题,是基础题.6、D【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】z=2i1-i=2i(1+i)本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7、A【解析】
先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【详解】∵由回归方程知=,解得t=3,故选A.】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.8、C【解析】
本题为对等高条形图,题目较简单,逐一排除选项,注意阴影部分位于上半部分即可.【详解】解:由图可知,女生喜欢理科的占,故B正确;男生喜欢理科的占,所以男生不軎欢理科的比为,故C不正确;同时男生比女生喜欢理科的可能性大些,故D正确;由此得到性别与喜欢理科有关,故A正确.故选:.本题考查等高条形图等基础知识,考查数据处理能力、运算求解能力,考查数形结合思想,是基础题.9、D【解析】
采用逐层求解的方式即可得到结果.【详解】∵,∴,则,∴,又∵,∴,故选D.本题主要考查函数的基础知识,强调一一对应性,属于基础题.10、B【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K2的观测值k越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B。11、D【解析】
根据导数的定义进行求解即可.【详解】∵lim△x→0∴23即23则f'故选D.本题主要考查导数的计算,根据导数的极限定义进行转化是解决本题的关键.12、C【解析】
分别求出被积函数的原函数,然后根据定积分的定义分别计算看其值是否为1即可.【详解】解:选项A,xdxx2,不满足题意;选项B,(x+1)dx=(x2+x)1,不满足题意;选项C,1dx=x1﹣0=1,满足题意;选项D,dxx0,不满足题意;故选C.考点:定积分及运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求直线AB的方程,再利用弦长公式求.【详解】由题得抛物线的焦点为,所以直线AB的方程为,即.把代入得,所以=.故答案为:本题主要考查抛物线的弦长的计算,意在考查学生对这些知识的理解掌握水平.14、【解析】
先求出男生的抽样比,再乘以样本容量即可得到应抽取的男生人数.【详解】因为某校高一年级有名学生,其中女生人,所以其中男生有180-80=100人,所以男生抽样比为,若抽取一个容量为的样本,则应抽取的男生人数是人.故答案为:25.本题考查了分层抽样,属于基础题.15、【解析】
根据,确定参数的取值范围.【详解】若满足,则.故答案为:本题考查根据集合的包含关系,求参数的取值范围,属于简单题型.16、是自然数.【解析】分析:直接利用演绎推理的三段论写出小前提即可.详解:由演绎推理的三段论可知:“自然数是整数,是自然数,是整数”,故答案为是自然数.点睛:本题考查演绎推理的三段论的应用,考查对基本知识的掌握情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)22.5元.【解析】
(1)先列出列联表,再根据列表求出K2=253>7.879,从而有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关.(2)设Ai表示检测到第i个环节有问题,(i=1,2,3,4),X表示成为一个合格的多晶圆需消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70【详解】(1)使用工艺不使用工艺合格合格281240不合格2810合计302050K故有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程这一工艺技术有关.(2)设X表示成为一个合格的多晶的晶圆还需要消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70.P(X=0)=P(X=10)=P(X=20)=P(X=30)=P(X=40)=P(X=50)=P(X=60)=P(X=70)=所以X分布列为:X010203040506070P248361218631故E(X)=0×24故平均还需要耗费22.5元.本题考查独立检验的应用,考查离散型随机变量的分布列和数学期望的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18、(1)(2)或【解析】
(1)先求出的值,再写出一个以为其中一根的实系数一元二次方程;(2)设,求出即得解.【详解】(1)所以,所以.所以.一个以为其中一根的实系数一元二次方程是.(2)设,所以所以,所以或.故纯虛数的平方根为或.本题主要考查纯虚数的概念和复数的运算,考查复数的平方根的求法,意在考查学生对这些知识的理解掌握水平.19、(1)(2)4(3)1,【解析】
分析:(1)化圆的一般方程为标准方程,求出圆心坐标,可得抛物线的焦点坐标,从而可得抛物线方程;(2)设点在抛物线的准线上的射影为点,根据抛物线定义知,要使的值最小,必三点共线,从而可得结果;(3),设,,根据焦半径公式可得,利用韦达定理化简可得结果.详解:(1)由已知易得,则求抛物线的标准方程C为.(2)设点P在抛物线C的准线上的摄影为点B,根据抛物线定义知要使的值最小,必三点共线.可得,.即此时.(3),设所以.点睛:本题主要考查抛物线的标准方程和抛物线的简单性质及利用抛物线的定义求最值,属于难题.与抛物线的定义有关的最值问题常常实现由点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线的距化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将拋物线上的点到焦点的距离转化为到准线的距离,利用“点与直线上所有点的连线中垂线段最短”原理解决.本题是将到焦点的距离转化为到准线的距离,再根据几何意义解题的.20、(1);(2);(3)见解析.【解析】分析:(1)赋值法:求(2)先求通项公式,利用解出,设第项的系数最大,所以(3)时,,利用组合数的公式化简求解。详解:(1),时,,令得,令得,可得;(2),,不妨设中,则或,中的最大值为;(3)若,,,因为,所以.点睛:(1)二项式定理求系数和的问题,采用赋值法。(2)求解系数的最大项,先设最大项的系数,注意所求的是第项的系数,计算不等式采用消去法化简计算,取整数。(3)组合数公式的计算整体变形,构造的结构,一般采用计算,不要展开。21、(1)证明见解析.(2).【解析】分析:(1)作Rt△斜边上的高,连结,易证平面,从而得证;(2)由四面体的体积为2,,得,所以平面,以,,为,,轴建立空间直角坐标系,利用面的法向量求解二面角的余弦值即可.详解:解法一:(1)如图,作Rt△斜边上的高,连结.因为,,所以Rt△≌Rt△.可得.所以平面,于是.(2)在Rt△中,因为,,所以,,,△的面积.因为平面,四面体的体积,所以,,,所以平面.以,,为,,轴建立空间直角坐标系.则,,,,,,.设是平面的法向量,则,即,可取.设是平面的法向量,则,即,可取.因为,二面角的平面角为钝角,所以二面角的余弦值为解法二:(1)因为,,所以Rt△≌Rt△.可得.设中点为,连结,,则,,所以平面,,于是.(2)在Rt△中,因为,,所以△面积为.设到平面距离为,因为四面体的体积,所以.在平面内过作,垂足为,因为,,所以.由点到平面距离定义知平面.因为,所以.因为,,所以,,所以,即二面角的余弦值为.点睛:本题主要考查空间位置关系的证明和空间角的计算,意在考查学生立体几何和空间向量的基础知识的掌握能力和基本的运算能力.证明位置关系和求空
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 更上教育面试题目及答案
- 2025年现代广告与传播学考试题及答案
- 普工笔试题目及答案
- 青海金融面试题及答案
- java中编程思想面试题及答案
- 2025年经济统计与数据分析考试题及答案
- 大连合志新生java面试题及答案
- 预测卷数学试题及答案
- 汽车销售行业车辆来源证明书(5篇)
- 网络设备性能与稳定性试题及答案
- 浪潮iqt在线测评题及答案
- (完整)北京版小学英语1至6年级词汇(带音标)
- 中等职业技术学校《二手车鉴定与评估》课程标准
- 热性惊厥诊断治疗与管理专家共识
- 《导乐陪伴分娩技术规范》征求意见稿
- DL∕T 1901-2018 水电站大坝运行安全应急预案编制导则
- 2023年小学音乐期末综合评价方案
- 400字作文稿纸方格A4打印模板
- 物理八年级下册《第3节 摩擦力》课件
- (高清版)DZT 0073-2016 电阻率剖面法技术规程
- 中医养生祛湿
评论
0/150
提交评论