上海市闵行区市级名校2024-2025学年高二下数学期末综合测试模拟试题含解析_第1页
上海市闵行区市级名校2024-2025学年高二下数学期末综合测试模拟试题含解析_第2页
上海市闵行区市级名校2024-2025学年高二下数学期末综合测试模拟试题含解析_第3页
上海市闵行区市级名校2024-2025学年高二下数学期末综合测试模拟试题含解析_第4页
上海市闵行区市级名校2024-2025学年高二下数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市闵行区市级名校2024-2025学年高二下数学期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点P(x,y)的坐标满足条件那么点P到直线3x-4y-13=0的距离的最小值为()A.2 B.1 C. D.2.将函数y=sin2x+π6的图象向右平移π6个单位长度后,得到函数f(x)的图象,A.kπ-5π12C.kπ-π33.定积分等于()A. B. C. D.4.已知集合,则等于()A. B. C. D.5.已知实数成等差数列,且曲线取得极大值的点坐标为,则等于()A.-1 B.0 C.1 D.26.若变量x,y满足约束条件则目标函数的取值范围是A.[2,6] B.[2,5] C.[3,6] D.[3,5]7.在中,,则角为()A. B. C. D.8.设集合P={3,log2a},Q={a,b},若,则()A.{3,1} B.{3,2,1} C.{3,2} D.{3,0,1,2}9.数学归纳法证明1n+1+1A.12k+2 B.12k+1 C.110.正数a、b、c、d满足,,则()A. B.C. D.ad与bc的大小关系不定11.已知函数在时取得极大值,则的取值范围是()A. B. C. D.12.已知函数在上的值域为,函数在上的值域为.若是的必要不充分条件,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合A={},集合B={},则________.14.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14④他恰好有连续2次击中目标的概率为3×0.93×0.1其中正确结论的序号是______15.用数学归纳法证明,在第二步证明从到成立时,左边增加的项数是_____项.16.函数的定义域是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一辆汽车前往目的地需要经过个有红绿灯的路口.汽车在每个路口遇到绿灯的概率为(可以正常通过),遇到红灯的概率为(必须停车).假设汽车只有遇到红灯或到达目的地才停止前进,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.(1)求汽车在第个路口首次停车的概率;(2)求的概率分布和数学期望.18.(12分)已知为正实数,函数.(1)求函数的最大值;(2)若函数的最大值是,求的最小值.19.(12分)设不等式表示的平面区别为.区域内的动点到直线和直线的距离之积为1.记点的轨迹为曲线.过点的直线与曲线交于、两点.(1)求曲线的方程;(1)若垂直于轴,为曲线上一点,求的取值范围;(3)若以线段为直径的圆与轴相切,求直线的斜率.20.(12分)已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.21.(12分)已知O是平面直角坐标系的原点,双曲线.(1)过双曲线的右焦点作x轴的垂线,交于A、B两点,求线段AB的长;(2)设M为的右顶点,P为右支上任意一点,已知点T的坐标为,当的最小值为时,求t的取值范围;(3)设直线与的右支交于A,B两点,若双曲线右支上存在点C使得,求实数m的值和点C的坐标.22.(10分)已知.(1)讨论的单调性;(2)若,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点到直线的最小值,即可求解.【详解】由约束条件作出可行域,如图所示,由图可知,当与重合时,点到直线的距离最小为.故选:A.本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.2、D【解析】

求出图象变换的函数解析式,再结合正弦函数的单调性可得出结论.【详解】由题意f(x)=sin2kπ-π∴kπ-π故选D.本题考查三角函数的平移变换,考查三角函数的单调性.解题时可结合正弦函数的单调性求单调区间.3、B【解析】

由定积分表示半个圆的面积,再由圆的面积公式可求结果。【详解】由题意可知定积分表示半径为的半个圆的面积,所以,选B.1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用,但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.(1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限;(3)确定被积函数,注意分清函数图形的上、下位置;(4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分.有些由函数的性质求函数的定积分。4、D【解析】分析:求出集合,,即可得到.详解:故选D.点睛:本题考查两个集合的交集运算,属基础题.5、B【解析】由题意得,,解得由于是等差数列,所以,选B.6、A【解析】

画出不等式组对应的可行域,将目标函数变形,画出目标函数对应的直线,由图得到当直线过A点时纵截距最大,z最大,当直线过(2,0)时纵截距最小,z最小.【详解】画出可行域,如图所示:将变形为,平移此直线,由图知当直线过A(2,2)时,z最大为6,当直线过(2,0)时,z最小为2,∴目标函数Z=x+2y的取值范围是[2,6]故选A.本题考查画不等式组表示的平面区域:直线定边界,特殊点定区域结合图形求函数的最值,属于基础题.7、D【解析】

利用余弦定理解出即可.【详解】本题考查余弦定理的基本应用,属于基础题.8、B【解析】分析:由求出a的值,再根据题意求出b的值,然后由并集运算直接得答案.详解:由,,即,,则.故选:B.点睛:本题考查了并集及其运算,考查了对数的运算,是基础题.9、D【解析】

求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【详解】当n=k时,左边的代数式为1k+1当n=k+1时,左边的代数式为1k+2故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:12k+1本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,属于中档题.10、C【解析】因为a,b,c,d均为正数,又由a+d=b+c得a2+2ad+d2=b2+2bc+c2所以(a2+d2)﹣(b2+c2)=2bc﹣2ad.①又因为|a﹣d|<|b﹣c可得a2﹣2ad+d2<b2﹣2bc+c2,②将①代入②得2bc﹣2ad<﹣2bc+2ad,即4bc<4ad,所以ad>bc故选C.11、A【解析】

先对进行求导,然后分别讨论和时的极值点情况,随后得到答案.【详解】由得,当时,,由,得,由,得.所以在取得极小值,不符合;当时,令,得或,为使在时取得极大值,则有,所以,所以选A.本题主要考查函数极值点中含参问题,意在考查学生的分析能力和计算能力,对学生的分类讨论思想要求较高,难度较大.12、B【解析】

先计算出两个函数的值域,根据是的必要不充分条件可得是的真子集,从而得到的取值范围.【详解】因为在上单调递增,所以,又函数在上单调递增,于是.因为是的必要不充分条件,所以是的真子集,故有(等号不同时取),得,故选B.(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含.二、填空题:本题共4小题,每小题5分,共20分。13、(1,2)【解析】分析:直接利用交集的定义求.详解:由题得={}∩{}=(1,2),故答案为:(1,2).点睛:本题主要考查交集的定义,意在考查学生对这些基础知识的掌握水平.14、①③【解析】分析:由题意知射击一次击中目标的概率是0.9,得到第3次击中目标的概率是0.9,连续射击4次,且他各次射击是否击中目标相互之间没有影响,得到是一个独立重复试验,根据独立重复试验的公式即可得到结果.详解:射击一次击中目标的概率是0.9,第3次击中目标的概率是0.9,①正确;连续射击4次,且各次射击是否击中目标相互之间没有影响,本题是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率是,②不正确;至少击中目标1次的概率是1-0.14③正确;恰好有连续2次击中目标的概率为,④不正确.故答案为:①③.点睛:本题主要考查了独立重复试验,以及n次独立重复试验中恰好发生k次的概率.15、【解析】

根据等式时,考虑和时,等式左边的项,再把时等式的左端减去时等式的左端,即可得到答案.【详解】解:当时,等式左端,当时,等式左端,所以增加的项数为:即增加了项.故答案为:.此题主要考查数学归纳法的问题,解答的关键是明白等式左边项的特点,再把时等式的左端减去时等式的左端,属于基础题.16、【解析】

将函数的指数形式转化为根式形式,即可求得其定义域.【详解】函数即根据二次根式有意义条件可知定义域为故答案为:本题考查了具体函数定义域的求法,将函数解析式进行适当变形,更方便求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,数学期望.【解析】

(1)汽车在第3个路口首次停车是指汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,由此利用相互独立事件概率乘法公式能求出汽车在第3个路口首次停车的概率.(2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.的可能取值为0,2,4,,,,由此能求出的概率分布列和数学期望.【详解】解:(1)由题意知汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,汽车在第3个路口首次停车的概率为:.(2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.则的可能取值为0,2,4,则,,,,的概率分布列为:024数学期望.本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法公式、二项分布的性质等基础知识,考查运算求解能力.18、(1).(2)【解析】

(1)利用绝对值三角不等式即可求得结果;(2)由(1)可得,利用柯西不等式可求得结果.【详解】(1)由绝对值三角不等式得:(当且仅当时取等号).为正实数,,即(当且仅当时取等号),的最大值为.(2)由(1)知:,即.,,(当且仅当,即,,时取等号).的最小值为.本题考查利用绝对值三角不等式和柯西不等式求解最值的问题;利用柯西不等式的关键是能够根据已知等式的形式,配凑出符合柯西不等式形式的式子,属于常考题型.19、(1);(1);(3)【解析】

(1)根据“区域内的动点到直线和直线的距离之积为”列方程,化简后求得曲线的方程.(1)求得两点的坐标,利用平面向量数量积的坐标运算化简,由此求得的取值范围.(3)设出直线的方程,联立直线的方程和曲线,写出韦达定理.求得以为直径的圆的圆心和直径,根据圆与轴相切列方程,解方程求得直线的斜率.【详解】(1)设,依题意①,因为满足不等式,所以①可化为.(1)将代入曲线的方程,解得.取,设,因为为曲线上一点,故.则.即的取值范围是.(3)设直线的方程是,.联立,消去得,所以.设线段的中点为,则,所以..因为以线段为直径的圆与轴相切,所以,即,化简得.所以直线的斜率为.本小题主要考查双曲线标准方程及其性质,考查一元二次方程根与系数关系,考查中点坐标公式、点到直线距离公式,考查运算求解能力,属于难题.20、(1)或;(2).【解析】

(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所以,因为,所以.本题考查根据向量的平行求向量的坐标,根据向量的垂直关系求向量的夹角,属于简单题.21、(1);(2)(3),.【解析】

(1)根据题意求出A、B两点坐标,即得线段AB的长;(2)先列函数关系式,再根据二次函数确定最小值取法,即得t的取值范围;(3)联立直线方程与双曲线方程,利用韦达定理求,解得C点坐标(用m表示),代入双曲线方程解得m的值和点C的坐标.【详解】(1)因为,所以令得(2),设,则由题意得时取最小值,所以(3)由,得,设,则,所以,因为在上,所以因为点C在双曲线右支上,所以本题考查双曲线弦长、直线与双曲线位置关系以及函数最值,考查综合分析求解能力,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论