整体法与隔离法_第1页
整体法与隔离法_第2页
整体法与隔离法_第3页
整体法与隔离法_第4页
整体法与隔离法_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

整体法与隔离法整体法与隔离法考情透析考情透析命题点命题特点整体法与隔离法在平衡问题中的应用高考常以生活中实际物体的受力情景为依托,需要学生巧妙运用整体法和隔离法解决系统的受力分析、动力学、功能关系等问题,不仅考查学生对整体和局部思想的理解能力,还考查学生利用基本模型解决综合问题的能力。整体法与隔离法在动力学中的应用热点热点突破命题点命题点1整体法与隔离法在平衡问题中的应用▼考题示例1(2022·河南·模拟题)质量均为m的两物块A、B之间连接着一个轻质弹簧,其劲度系数为k,再将物块A、B放在水平地面上一斜面的等高处,如图所示。弹簧处于压缩状态,物块与斜面均能保持静止,已知斜面的倾角为θ,两物块和斜面间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力。下列说法正确的是()A.斜面和水平地面间有静摩擦力B.斜面对A、B组成系统的静摩擦力的合力为mgsinθC.若将弹簧拿掉,物块有可能发生滑动D.弹簧的最大压缩量为eq\f(mg\r(μ2cos2θ-sin2θ),k)答案:D解析:A.物块与斜面均能保持静止,对整体受力分析可知:整体在水平方向不受外力,故斜面和水平地面间不受静摩擦力;故A错误;B.对物块AB及弹簧组成的系统受力分析可知:整体受重力、支持力和斜面的摩擦力,则摩擦力大小为2mgsinθ;故B错误;C.对物块A受力分析,在斜面内的力如图1,fA与F弹和mgsinθ的合力大小相等、方向相反。当撤去弹簧,A在斜面内的受力如图2所示,由图1可知mgsinθ<fA≤fm(最大静摩擦力),故图2中物块所受的静摩擦力可以平衡重力沿斜面方向的分力,即fA′=mgsinθ所以物块不可能发生滑动,C错误;D.物块静止在斜面上,在斜面这个平面内共有三个力作用在物体上,一个是重力沿斜面向下的分力mgsinθ,静摩擦力f≤fm=μmgcosθ,方向不确定,沿水平方向的弹簧弹力kx,则弹力等于mgsinθ和静摩擦力f的合力,当静摩擦力最大,即fm=μmgcosθ,弹力最大,此时:kx=,得:x=;故D正确。故选:D。跟踪训练1(2024·河南省·联考题)(多选)如图所示,三根轻质细线结于O点,OA另一端固定在天花板上的A点(位于圆心O′的正上方),OB另一端连接质量为m的小球P(可视为质点),OC另一端连接质量为2m的物体Q,将小球P放置于半径为R、质量为3m的圆表面光滑的半圆柱上,半圆柱及物体Q均放置于粗糙水平面上,当A、O、O′处于同一竖直线上时,OC处于水平且物体Q恰好不滑动,此时OB=,OO′=2R,重力加速度大小为g,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.半圆柱所受的摩擦力与物体Q所受到的摩擦力大小相等B.OC段绳子的拉力大小为C.水平面对圆柱体的支持力大小为4mgD.物体Q与水平面间的动摩擦因数为答案:AD解析:根据题意,对整体进行受力分析,水平方向上合力为零,物块所受摩擦力与半圆柱体所受摩擦力等大反向,故A正确:根据题意,对小球P受力分析,受重力mg,光滑半圆柱的支持力N和绳子的拉力F,处于平衡状态,画出拉力F等大反向的力F′,即为mg和N的合力,如图所示由相似三角形有解得F′=,N=由余弦定理有cosθ=则有sinθ=对结点O受力分析,如图所示由平衡条件有F2=F1sinθ对物体Q受力分析,如图所示由平衡条件有FN=2mg,f=F4又有F4=F2=F1sinθ=Fsinθ=F′sinθ=,f=μFN则有μ=;水平面对半圆柱支持力FN=4mg-Fcosθ=4mg-,综上分析,故选AD。总结升华1、整体法和隔离法基本思想的比较:整体法是指将相互关联的各个物体看成一个整体的方法,整体法的优点在于只需要分析整个系统与外界的关系,避开了系统内部繁杂的相互作用。隔离法是指将某物体从周围物体中隔离出来,单独分析该物体的方法,隔离法的优点在于能把系统内各个物体所处的状态、物体状态变化的原因以及物体间的相互作用关系表达清楚。2、应用整体法与隔离法求解平衡问题的基本步骤:(1)选取研究对象,分析所研究的问题适合应用整体法还是隔离法;一般原则:已知外力求内力,先整体后隔离;已知内力求外力,先隔离后整体。(2)对整体或隔离体进行受力分析;(3)利用合成法或正交分解列平衡方程求解。命题点命题点2整体法与隔离法在动力学中的应用▼考题示例2(2023·湖南省·历年真题)(多选)如图,光滑水平地面上有一质量为2m的小车在水平推力F的作用下加速运动。车厢内有质量均为m的A、B两小球,两球用轻杆相连,A球靠在光滑左壁上,B球处在车厢水平底面上,且与底面的动摩擦因数为μ,杆与竖直方向的夹角为θ,杆与车厢始终保持相对静止假设最大静摩擦力等于滑动摩擦力。下列说法正确的是()A.若B球受到的摩擦力为零,则F=2mgtanθB.若推力F向左,且tanθ≤μ,则F的最大值为2mgtanθC.若推力F向左,且μ<tanθ≤2μ,则F的最大值为4mg(2μ-tanθ)D.若推力F向右,且tanθ>2μ,则F的范围为4mg(tanθ-2μ)≤F≤4mg(tanθ+2μ)答案:CD解析:A.对小球A:受自身的重力mg,杆对A支持力N,小车的墙壁对A的支持力;由于小球A始终与车厢保持相对静止,故小球A在竖直方向的合力为0,即Ncosθ=mg若B球受到的摩擦力为零,对B,杆对B的作用力在水平方向的分力提供小球B的合外力,根据牛顿第二定律可得:Nsinθ=ma,可得:a=gtanθ对小球A、B和小车整体,水平方向只受推力F作用,故由牛顿第二定律知:F=4ma=4mgtanθ,A错误;B.若推力F向左,根据牛顿第二定律可知加速度向左,小球A所受向左的合力的最大值为:Nsinθ=mgtanθ对小球B,由于tanθ≤μ,小球B受到向左的合力的最大值:Fmax=μ(Ncosθ+mg)-Nsinθ≥mgtanθ故要使AB相对车厢始终静止,则小车的最大加速度即为小球A向左运动的最大加速度对小球A,根据牛顿第二定律可得:Nsinθ=mamax对系统整体根据牛顿第二定律知,推力F的最大值为:F=4mamax解得:F=4mgtanθ,B错误;C.若推力F向左,根据牛顿第二定律可知加速度向左,小球A所受向左的合力的最大值为:Nsinθ=mgtanθ小球B所受向左的合力为:F1max=(Ncosθ+mg)·μ-Nx=2μmg-mgtanθ由于μ<tanθ≤2μ可知:F1max<mgtanθ故要使AB相对车厢始终静止,则小车的最大加速度即为小球B向左运动的最大加速度根据牛顿第二定律:F1max=2μmg-mgtanθ=mamax1对系统根据牛顿第二定律,此时推力F的最大值为:F=4mamax1联立可得F的最大值为:F=4mg(2μ-tanθ),C正确;D.若推力F向右,根据牛顿第二定律可知系统整体加速度向右,由于小球A可以受到左壁向右的支持力,理论上向右的合力可以无限大,因此只需要讨论小球B即可,当小球B所受的摩擦力向左时,小球B向右的合力最小此时:Fmin=Nsinθ-(Ncosθ+mg)μ=mgtanθ-2μmg当小球所受摩擦力向右时,小球B向右的合力最大此时:F2max=Nsinθ+(Ncosθ+mg)μ=mgtanθ+2μmg对小球B根据牛顿第二定律:Fmin=maminF2max=mamax2对系统根据牛顿第二定律:F=4ma联立解得F的范围为:4mg(tanθ-2μ)≤F≤4mg(tanθ+2μ),D正确。故选:CD。跟踪训练2(2024·湖南省长沙市·模拟题)(多选)如图,轻质的光滑滑轮K与质量为M的物块A由一硬轻杆连接在一起,成为一个物体,物块A放置于水平面上。质量为m的物块B与跨过滑轮的轻绳一端相连,轻绳另一端固定在墙上且水平,物块B与物块A间的动摩擦因数为μ,重力加速度为g。则下列说法正确的是()A.若A静止,则地面对A的作用力为B.若水平地面光滑,则A、B的加速度大小关系为aB=C.若水平地面光滑,则A的加速度大小aA=D.若水平地面光滑,则轻绳的拉力T=答案:BC解析:A.若A静止,由整体法得地面对A的作用力为,A错误;B.若水平地面光滑,由于绳子不可伸长,则B下降的加速度和A向右的加速度大小相等,则A、B的加速度大小关系为aB=,B正确;CD.受力分析如图,再分别对A、B列牛顿运动定律,对A:T-N=Ma对B:N=ma,mg-T-μN=ma解得aA=a=,T=,C正确,D错误。故选BC。总结升华选用整体法、隔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论