云南省玉龙纳西族自治县一中2025年数学高二下期末检测试题含解析_第1页
云南省玉龙纳西族自治县一中2025年数学高二下期末检测试题含解析_第2页
云南省玉龙纳西族自治县一中2025年数学高二下期末检测试题含解析_第3页
云南省玉龙纳西族自治县一中2025年数学高二下期末检测试题含解析_第4页
云南省玉龙纳西族自治县一中2025年数学高二下期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉龙纳西族自治县一中2025年数学高二下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙等人在南沙聚会后在天后宫沙滩排成一排拍照留念,甲和乙必须相邻的排法有().A.种 B.种 C.种 D.种2.设.若函数,的定义域是.则下列说法错误的是()A.若,都是增函数,则函数为增函数B.若,都是减函数,则函数为减函数C.若,都是奇函数,则函数为奇函数D.若,都是偶函数,则函数为偶函数3.下列函数中,既是偶函数又在上单调递增的函数是()A. B. C. D.4.已知复数满足,则共轭复数()A. B. C. D.5.已知双曲线:与双曲线:,给出下列说法,其中错误的是()A.它们的焦距相等 B.它们的焦点在同一个圆上C.它们的渐近线方程相同 D.它们的离心率相等6.设,则()A. B. C. D.7.已知椭圆的左右焦点分别,,焦距为4,若以原点为圆心,为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为()A. B.C. D.8.已知命题,则命题的否定为()A. B.C. D.9.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,19岁的世界围棋第一人柯洁0:3不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的2600男性中,有1560人持反对意见,2400名女性中,有1118人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是()A.分层抽样 B.回归分析 C.独立性检验 D.频率分布直方图10.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为()A. B. C. D.12.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)二、填空题:本题共4小题,每小题5分,共20分。13.右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为_____________.14.观察下列算式:,,,,…,,则____.15.已知直线(,是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有______条(用数字作答).16.对于自然数方幂和(,),,,求和方法如下:23﹣13=3+3+1,33﹣23=3×22+3×2+1,……(n+1)3﹣n3=3n2+3n+1,将上面各式左右两边分别,就会有(n+1)3﹣13=++n,解得=n(n+1)(2n+1),类比以上过程可以求得,A,B,C,D,E,FR且与n无关,则A+F的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.18.(12分)已知二项式的展开式中,前三项系数的绝对值成等差数列.(1)求正整数的值;(2)求展开式中二项式系数最大的项;(3)求展开式中系数最大的项.19.(12分)选修4-5:不等式选讲已知函数.(1)求不等式的解集;(3)若函数的最小值不小于的最小值,求的取值范围.20.(12分)如图,在三棱柱中,侧面底面,,.(Ⅰ)求证:平面;(Ⅱ)若,,且与平面所成的角为,求二面角的平面角的余弦值.21.(12分)已知抛物线与直线相交于A、B两点,点O是坐标原点.(Ⅰ)求证:OAOB;(Ⅱ)当△OAB的面积等于时,求t的值.22.(10分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB,D,E分别是AB,BB1的中点,且AC=BC=AA1=1.(1)求直线BC1与A1D所成角的大小;(1)求直线A1E与平面A1CD所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意利用捆绑法求解,甲、乙两人必须相邻的方法数为种.选.2、C【解析】

根据题意得出,据此依次分析选项,综合即可得出答案.【详解】根据题意可知,,则,据此依次分析选项:对于A选项,若函数、都是增函数,可得图象均为上升,则函数为增函数,A选项正确;对于B选项,若函数、都是减函数,可得它们的图象都是下降的,则函数为减函数,B选项正确;对于C选项,若函数、都是奇函数,则函数不一定是奇函数,如,,可得函数不关于原点对称,C选项错误;对于D选项,若函数、都是偶函数,可得它们的图象都关于轴对称,则函数为偶函数,D选项正确.故选C.本题考查分段函数的奇偶性与单调性的判定,解题时要理解题中函数的定义,考查判断这些基本性质时,可以从定义出发来理解,也可以借助图象来理解,考查分析问题的能力,属于难题.3、D【解析】分析:分别判断函数的奇偶性和单调性,即可得到结论.详解:A.函数为奇函数,不满足条件.B.y=﹣x2+1是偶函数,当x>0时,函数为减函数,不满足条件.C.是偶函数又在上单调递减,故不正确.D.y=|x|+1是偶函数,当x>0时,y=x+1是增函数,满足条件.故选D.点睛:本题主要考查函数奇偶性和单调性的判断,结合函数奇偶性和单调性的定义和函数的性质是解决本题的关键.4、D【解析】

先利用复数的乘法将复数表示为一般形式,然后利用共轭复数的定义得出.【详解】,因此,,故选D.本题考查复数的乘法运算以及共轭复数的概念,解复数相关的问题,首先利用复数四则运算性质将复数表示为一般形式,然后针对实部和虚部求解,考查计算能力,属于基础题.5、D【解析】由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,6、B【解析】分析:先分析出ab<0,a+b<0,再利用作差法比较的大小关系得解.详解:由题得<ln1=0,>.所以ab<0..所以,所以.故答案为B.点睛:(1)本题主要考查实数大小的比较和对数函数的性质,考查对数的运算,意在考查学生对这些知识的掌握水平和基本运算能力.(2)解答本题的关键是对数的运算.7、A【解析】

已知,又以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有,于是可得,从而得椭圆方程。【详解】∵以原点为圆心,为直径的圆恰好与椭圆有两个公共点,∴这两个公共点只能是椭圆短轴的顶点,∴,又即,∴,∴椭圆方程为。故选:A。本题考查椭圆的标准方程,解题关键时确定的值,本题中注意椭圆的对称轴,从而确定关系。8、A【解析】

根据全称命题的否定为特称命题,即可直接得出结果.【详解】因为命题,所以命题的否定为:故选A本题主要考查含有一个量词的命题的否定,只需改写量词与结论即可,属于常考题型.9、C【解析】

根据“性别”以及“反对与支持”这两种要素,符合2×2,从而可得出统计方法。【详解】本题考查“性别”对判断“人机大战是人类的胜利”这两个变量是否有关系,符合独立性检验的基本思想,因此,该题所选择的统计方法是独立性检验,故选:C.本题考查独立性检验适用的基本情形,熟悉独立性检验的基本思想是解本题的概念,考查对概念的理解,属于基础题。10、B【解析】

根据充分性和必要性的判断方法来判断即可.【详解】当时,若,不能推出,不满足充分性;当,则,有,满足必要性;所以“”是“”的必要不充分条件.故选:B.本题考查充分性和必要性的判断,是基础题.11、A【解析】

分析:构造新函数,利用已知不等式确定的单调性,详解:设,则,由已知得,∴是减函数.∵是偶函数,∴的图象关于直线对称,∴,,的解集为,即的解集为.故选A.点睛:本题考查用导数研究函数的单调性,解题关键是是构造新函数,对于含有的已知不等式,一般要构造新函数如,,,等等,从而能利用已知条件确定的单调性,再解出题中不等式的解集.12、C【解析】

求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、9.【解析】分析:计算正方形二维码的面积,利用面积比等于对应的点数比求得黑色部分的面积.详解:边长为4的正方形二维码面积为,设图中黑色部分的面积为S,则,解得.据此估计黑色部分的面积为9.故答案为:9.点睛:本题考查了用模拟实验的方法估计概率的应用计算问题,是基础题.14、142;【解析】

观察已知等式的规律,可猜想第行左边第一个奇数为后续奇数依次为:由第行第一个数为,即:,解得:,可得:,即可得解.【详解】第行等号左边第一个加数为第个奇数,即,于是第一个加数为,所以第个等式为,,本题主要考查归纳与推理,猜想第行左边第一个奇数为进而后续奇数依次为:是解题的关键.15、60【解析】

直线是截距式方程,因而不平行坐标轴,不过原点,考察圆上横坐标和纵坐标均为整数的点的个数,结合组合知识分类解答.【详解】依题意直线截距均不为0,即与坐标轴不垂直,不过坐标原点,圆上的横坐标和纵坐标均为整数的点有12个,分别为,前个点中,过任意一点的圆的切线满足,有条;12个点过任意两点,构成条直线,有条垂直轴,有条直线垂直轴,还有条直线过原点(圆上点的对称性),满足条件的直线有条.综上可知满足条件的直线共有条.故答案为:.本题考查直线与圆的位置关系,利用组合知识是解题的关键,注意直线截距式方程的限制条件,属于中档题.16、.【解析】分析:先根据推导过程确定A,F取法,即得A+F的值.详解:因为,,所以,所以,,所以.点睛:本题考查运用类比方法求解问题,考查归纳观察能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)30;(2)54,55;(3)的分布列如下:012数学期望【解析】试题分析:(1)由频率分布直方图知年龄在[40,70)的频率为(0.020+0.030+0.025)×10,进而得出40

名读书者中年龄分布在[40,70)的人数.(2)40

名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+65×0.25+75×0.1.计算频率为处所对应的数据即可得出中位数.(3)年龄在[20,30)的读书者有2人,年龄在[30,40)的读书者有4人,所以X的所有可能取值是0,1,2.利用超几何分布列计算公式即可得出.试题解析:(1)由频率分布直方图知年龄在的频率为,所以40名读书者中年龄分布在的人数为.(2)40名读书者年龄的平均数为.设中位数为,则解得,即40名读书者年龄的中位数为55.(3)年龄在的读书者有人,年龄在的读书者有人,所以的所有可能取值是0,1,2,,,,的分布列如下:012数学期望.18、(1);(2);(3).【解析】

(1)根据等差中项的性质列方程可得出的值;(2)根据二项式系数的对称性和单调性可得出二项式系数最大的项;(3)由,求出的取值范围,即可得出系数最大项对应的项的序数.【详解】(1)二项式展开式的通项为,由于展开式系数的绝对值成等差数列,则,即,整理得,,解得;(2)第项的二项式系数为,因此,第项的二项式系数最大,此时,;(3)由,得,整理得,解得,所以当或时,项的系数最大.因此,展开式中系数最大的项为.本题考查二项式定理的应用,二项式系数的定义和基本性质,同时也考查了项的系数最大项的求解,考查运算求解能力,属于中等题.19、(1).(2).【解析】分析:(1)分段讨论即可;(2)分别求出和的最小值,解出即可.详解:(1)由,得,∴或或解得,故不等式的解集为.(2)∵,∴的最小值为.∵,∴,则或,解得.点睛:求解与绝对值不等式有关的最值问题的方法求解含参数的不等式存在性问题需要过两关:第一关是转化关,先把存在性问题转化为求最值问题;不等式的解集为R是指不等式的恒成立问题,而不等式的解集为∅的对立面也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.第二关是求最值关,求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||;③利用零点分区间法.20、(1)见解析;(2)余弦值为.【解析】分析:(1)由四边形为菱形,得对角线,由侧面底面,,得到侧面,从而,由此能证明平面;(2)由题意易知为等边三角形,以点为坐标原点,为轴,为轴,过平行的直线为,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,由此能求出二面角的平面角的余弦值.详解:(Ⅰ)由已知侧面底面,,底面,得到侧面,又因为侧面,所以,又由已知,侧面为菱形,所以对角线,即,,,所以平面.(Ⅱ)设线段的中点为点,连接,,因为,易知为等边三角形,中线,由(Ⅰ)侧面,所以,得到平面,即为与平面所成的角,,,,,得到;以点为坐标原点,为轴,为轴,过平行的直线为,建立空间直角坐标系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论