新疆生产建设兵团二中2025年数学高二下期末学业质量监测试题含解析_第1页
新疆生产建设兵团二中2025年数学高二下期末学业质量监测试题含解析_第2页
新疆生产建设兵团二中2025年数学高二下期末学业质量监测试题含解析_第3页
新疆生产建设兵团二中2025年数学高二下期末学业质量监测试题含解析_第4页
新疆生产建设兵团二中2025年数学高二下期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆生产建设兵团二中2025年数学高二下期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是虚数单位,复数的共轭复数(

)A. B. C. D.2.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.20 B.10 C.30 D.603.下面有五个命题:①函数y=sin4x-cos4x的最小正周期是π;②终边在y轴上的角的集合是{α|α=kπA.①③ B.①④ C.②③ D.③④4.设,,则A. B., C. D.,5.已知两变量x和y的一组观测值如下表所示:x234y546如果两变量线性相关,且线性回归方程为,则=()A.- B.-C. D.6.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.7.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入万8.38.69.911.112.1支出万5.97.88.18.49.8根据上表可得回归直线方程,其中,元,据此估计,该社区一户收入为16万元家庭年支出为()A.12.68万元 B.13.88万元 C.12.78万元 D.14.28万元8.定积分121xdxA.-34 B.3 C.ln9.已知函数,若是图象的一条对称轴的方程,则下列说法正确的是()A.图象的一个对称中心 B.在上是减函数C.的图象过点 D.的最大值是10.已知双曲线上有一个点A,它关于原点的对称点为B,双曲线的右焦点为F,满足,且,则双曲线的离心率e的值是A. B. C.2 D.11.设是虚数单位,条件复数是纯虚数,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.复数的模是()A.3 B.4 C.5 D.7二、填空题:本题共4小题,每小题5分,共20分。13.己知,,则______.14.执行如图所示的程序框图则输出的实数m的值为______.15.的展开式中,的系数为__________(用数字作答).16.如图,已知中,点M在线段AC上,点P在线段BM上,且满足,若,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别为.已知.(1)若,,求的面积;(2)求的取值范围.18.(12分)已知.(1)讨论的单调性;(2)若存在及唯一正整数,使得,求的取值范围.19.(12分)设是数列{}的前项和,,且.(I)求数列{}的通项公式;(Ⅱ)设,求.20.(12分)如图,平面平面为等边三角形,,过作平面交分别于点,设.(1)求证:平面;(2)求的值,使得平面与平面所成的锐二面角的大小为.21.(12分)已知抛物线:的焦点为,准线为,与轴的交点为,点在抛物线上,过点作于点,如图1.已知,且四边形的面积为.(1)求抛物线的方程;(2)若正方形的三个顶点,,都在抛物线上(如图2),求正方形面积的最小值.22.(10分)已知矩阵,矩阵B的逆矩阵.(1)求矩阵A的特征值及矩阵B.(2)若先对曲线实施矩阵A对应的变换,再作矩阵B对应的变换,试用一个矩阵来表示这两次变换,并求变换后的结果.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

利用复数代数形式的乘法运算化简z,再由共轭复数的概念得到答案.【详解】因为,所以,故选B.该题考查的是有关复数的共轭复数问题,涉及到的知识点有复数的除法运算法则,复数的乘法运算法则,以及共轭复数,正确解题的关键是灵活掌握复数的运算法则.2、B【解析】

根据三视图还原几何体,根据棱锥体积公式可求得结果.【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:;底面面积:三棱锥体积:本题正确选项:本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.3、B【解析】

①先进行化简,再利用求周期的公式即可判断出是否正确;②对k分奇数、偶数讨论即可;③令h(x)=x﹣sinx,利用导数研究其单调性即可;④利用三角函数的平移变换化简求解即可.【详解】①函数y=sin4x﹣cos4x=(sin2x+cos2x)(sin2x﹣cos2x)=﹣cos2x,∴最小正周期T=2π2=π,∴函数y=sin4x﹣cos4x的最小正周期是π,故①②当k=2n(n为偶数)时,a=2nπ2=nπ,表示的是终边在x轴上的角,故②③令h(x)=x﹣sinx,则h′(x)=1﹣cosx≥0,∴函数h(x)在实数集R上单调递增,故函数y=sinx与y=x最多只能一个交点,因此③不正确;④把函数y=3sin(2x+π3)的图象向右平移π6得到y=3sin(2x﹣π3综上可知:只有①④正确.故选B.本题综合考查了三角函数的周期性、单调性、三角函数取值及终边相同的角,利用诱导公式进行化简和利用导数判断单调性是解题的关键.4、A【解析】

利用一元二次不等式的解法以及对数函数的单调性,求出集合,,然后进行交集的运算即可。【详解】,;,故选.本题主要考查区间表示集合的定义,一元二次不等式的解法,对数函数的定义域及单调性,以及交集的运算.5、D【解析】

先计算==3,==5,代入方程即可.【详解】==3,==5,代入线性回归方程可得5=3+,解之得=.故选D线性回归直线必过样本中心.6、C【解析】

由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.7、A【解析】

由已知求得,,进一步求得,得到线性回归方程,取求得值即可.【详解】,.又,∴.∴.取,得万元,故选A.本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.8、C【解析】

直接利用微积分基本定理求解即可.【详解】由微积分基本定理可得,121x本题主要考查微积分基本定理的应用,意在考查对基础知识的掌握情况,属于基础题.9、A【解析】

利用正弦函数对称轴位置特征,可得值,从而求出解析式,利用的图像与性质逐一判断即可.【详解】∵是图象的一条对称轴的方程,∴,又,∴,∴.图象的对称中心为,故A正确;由于的正负未知,所以不能判断的单调性和最值,故B,D错误;,故C错误.故选A.本题主要考查三角函数的图像与性质.10、B【解析】

设是双曲线的左焦点,由题可得是一个直角三角形,由,可用表示出,,利用双曲线定义列方程即可求解.【详解】依据题意作图,如下:其中是双曲线的左焦点,因为,所以,由双曲线的对称性可得:四边形是一个矩形,且,在中,,,,由双曲线定义得:,即:,整理得:,故选B本题主要考查了双曲线的简单性质及双曲线定义,考查计算能力,属于基础题.11、A【解析】

复数是纯虚数,必有利用充分条件与必要条件的定义可得结果.【详解】若复数是纯虚数,必有所以由能推出;但若,不能推出复数是纯虚数.所以由不能推出.,因此是充分不必要条件,故选A.本题主要考查复数的基本概念以及充分条件与必要条件的定义,属于简单题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.12、C【解析】

直接利用复数的模的定义求得的值.【详解】|,故选:C.本题主要考查复数的模的定义和求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用公式,能求出向量与的夹角的余弦值.【详解】解:因为,,所以,,故答案为:本题考查向量的夹角的求法,解题时要认真审题,注意向量法的合理运用,属于基础题.14、1【解析】

先要通读程序框图,看到程序中有循环结构,然后代入初值,看是否进入循环体,是就执行循环体,写清每次循环的结果;不是就退出循环,看清要输出的是何值.【详解】模拟执行程序,可得,满足条件,,满足条件,,满足条件,,满足条件,,满足条件,,满足条件,,满足条件,,满足条件,,满足条件,,满足条件,,不满足条件,退出循环,输出m的值为1.故答案为:1.本题考查程序框图要掌握常见的当型、直到型循环结构;以及会判断条件结构,并得到条件结构的结果;在已知框图的条件下,可以得到框图的结果.15、【解析】.16、-2【解析】.,化为,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据正弦定理和利用,得到,最后求面积;(2)由已知可得,所以,转化为三角函数恒等变形,得到,根据角的范围求函数的取值范围.【详解】解:(1)在中,∵,∴,∵,,由正弦定理得:,∴,∴,,∴.(2).∵,∴.∴,则.本题考查了利用正余弦定理解三角形,和三角恒等变换求函数的最值,第一问也可利用余弦定理求边,利用求面积.18、(1)的单调递减区间是,单调递增区间是;(2)的取值范围是.【解析】试题分析:(1)求出函数的导函数,通过对导函数符号的讨论可得函数的单调性.(2)由题意得函数在上的值域为.结合题意可将问题转化为当时,满足的正整数解只有1个.通过讨论的单调性可得只需满足,由此可得所求范围.试题解析:(1)由题意知函数的定义域为.因为,所以,令,则,所以当时,是增函数,又,故当时,单调递减,当时,单调递增.所以上单调递减,在上单调递增.(2)由(1)知当时,取得最小值,又,所以在上的值域为.因为存在及唯一正整数,使得,所以满足的正整数解只有1个.因为,所以,所以在上单调递增,在上单调递减,所以,即,解得.所以实数的取值范围是.点睛:本题中研究方程根的情况时,通过导数研究函数的单调性、最大(小)值、函数图象的变化趋势等,根据题目画出函数图象的草图,通过数形结合的思想去分析问题,使问题的解决有一个直观的形象,然后在此基础上再转化为不等式(组)的问题,通过求解不等式可得到所求的参数的取值(或范围).19、(Ⅰ)an=2n.(Ⅱ)【解析】

(Ⅰ)利用数列递推关系即可得出.(Ⅱ)利用裂项求和即可求解.【详解】∵4Sn=an(an+2),①当n=1时得,即a1=2,当n≥2时有4Sn﹣1=an﹣1(an﹣1+2)②由①﹣②得,即2(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),又∵an>0,∴an﹣an﹣1=2,∴an=2+2(n﹣1)=2n.(Ⅱ)∵,∴Tn=b1+b2+…+bn本题考查了数列递推关系、裂项求和、数列的单调性,考查了推理能力与计算能力,属于中档题.20、(1)详见解析(2)【解析】试题分析:(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需结合平几条件,如三角形相似,本题可根据得,而,因此(2)利用空间向量研究二面角,首先利用垂直关系建立恰当的空间直角坐标系,设立各点坐标,利用方程组解两个平面的法向量,利用向量数量积求夹角,最后根据向量夹角与二面角之间关系得等量关系,求的值试题解析:(1)证明:如图,以点为原点建立空间直角坐标系,不妨设,则,由,得,则.易知是平面的一个法向量,且,故,又因为平面,平面.(2),设平面法向量为,则,故可取,又是平面的一个法向量,由为平面与平面所成锐二面角的度数),以及得,.解得或(舍去),故.考点:线面平行判定定理,利用空间向量研究二面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21、(1);(2).【解析】

(1)通过借助抛物线的几何性质,设,通过勾股定理可求得,借助线段关系可求得,再借助梯形面积公式最终可求得值,进而求得抛物线的方程;(2)先通过设而不求得方法分别表示出,,和直线的斜率为和的斜率,通过正方形的边长关系代换出与直线的斜率的关系,将面积用含的式子整体代换表示,最终通过均值不等式处理可求得正方形面积的最小值.【详解】(1)设,由已知,则,,四边形的面积为,∴,抛物线的方程为:.(2)设,,,直线的斜率为.不妨,则显然有,且.∵,∴.由得即,即.将,代入得,∴,∴.故正方形面积为.∵,∴(当且仅当时取等).又∵,∴,∴(当且仅当时取等).从而,当且仅当时取得最小值.结合几何关系求解曲线方程是常见题型,解题思路是通过曲线的几何性质和几何关系联立求解;直线与曲线问题是圆锥曲线中考查概率最大的一种题型,通过韦达定理求解是常规方法,本题中由于涉及坐标点较多,故采用设而不求,便捷之处在于能简化运算,本题中通过此法搭建了与斜率的表达式,为后续代换省去不少计算步骤,但本题难点在于最终关于的因式的最值求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论