遂宁市重点中学2025年数学高二下期末教学质量检测试题含解析_第1页
遂宁市重点中学2025年数学高二下期末教学质量检测试题含解析_第2页
遂宁市重点中学2025年数学高二下期末教学质量检测试题含解析_第3页
遂宁市重点中学2025年数学高二下期末教学质量检测试题含解析_第4页
遂宁市重点中学2025年数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

遂宁市重点中学2025年数学高二下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,为锐角,且,若,则的最大值为()A. B. C. D.2.若,都是实数,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.设,随机变量的分布列如图,则当在内增大时,()A.减小 B.增大C.先减小后增大 D.先增大后减小4.已知复数z满足,则复数等于()A. B. C. D.i5.在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.6.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.7.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15∘,与灯塔S相距20nmile,随后货轮按北偏西30∘的方向航行30A.20(2+C.20(6+8.对于平面上点和曲线,任取上一点,若线段的长度存在最小值,则称该值为点到曲线的距离,记作,若曲线是边长为的等边三角形,则点集所表示的图形的面积为()A. B. C. D.9.由曲线和直线,,()所围成图形(阴影部分)的面积的最小值为().A. B. C. D.10.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“⊥”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.,xRB.,xR且x≠0C.,xRD.,xR12.已知空间向量,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.参数方程(为参数,且)化为普通方程是_________;14.函数(a>0且a≠1)的图象经过的定点的坐标是_____15.已知实数满足约束条件,且的最小值为,则常数__________.16.在极坐标系中,直线被圆ρ=4截得的弦长为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“蛟龙号”从海底中带回某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验是失败的.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)若甲乙两小组各进行2次试验,求两个小组试验成功至少3次的概率.18.(12分)已知直线l的参数方程为(为参数).以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线l经过的定点的直角坐标,并求曲线的普通方程;(2)若,求直线的极坐标方程,以及直线l与曲线的交点的极坐标.19.(12分)已知直线的极坐标方程为,曲线的参数方程为(为参数)(Ⅰ)求直线的直角坐标方程和曲线的普通方程;(Ⅱ)若过且与直线垂直的直线与曲线相交于两点,,求.20.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:不等式对于任意恒成立.(1)若命题为真命题,求实数的取值范围;(2)若命题为真,为假,求实数的取值范围.21.(12分)解关于x的不等式ax2+ax-1>x22.(10分)已知函数=│x+1│–│x–2│.(1)求不等式≥1的解集;(2)若不等式≥x2–x+m的解集非空,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

把代入等式中,进行恒等变形,用表示,最后利用基本不等式,求出的最大值.【详解】,.因为为锐角,且,所以,,,(当且仅当时取等号),所以,因此的最大值为,故本题选B.本题考查了三角恒等变形,考查了两角差的正切公式,考查了应用基本不等式求代数式最值问题.2、A【解析】分析:先证明充分性,两边同时平方即可,再证明必要性,取特值,从而判断出结果。详解:充分性:将两边平方可得:化简可得:则,故满足充分性必要性:,当时,,故不满足必要性条件则是的充分而不必要条件故选点睛:本题考查了充分条件与必要条件的判定,可以根据其定义进行判断,在必要性的判定时采用了取特值的方法,这里也要熟练不等式的运用3、D【解析】

先求数学期望,再求方差,最后根据方差函数确定单调性.【详解】,,,∴先增后减,因此选D.4、D【解析】

把给出的等式通过复数的乘除运算化简后,直接利用共轭复数的定义即可得解.【详解】,,.故选:D.本题考查了复数的代数形式的乘除运算,考查共扼复数,是基础题.5、A【解析】分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.详解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,∴A(1,0,0),D1(0,0,2),D(0,0,0),B1(1,1,2),=(﹣1,0,2),=(1,1,2),设异面直线AD1与DB1所成角为θ,则cosθ=∴异面直线AD1与DB1所成角的余弦值为.故答案为:A.点睛:(1)本题主要考查异面直线所成的角的向量求法,意在考查学生对该知识的掌握水平和分析转化能力.(2)异面直线所成的角的常见求法有两种,方法一:(几何法)找作(平移法、补形法)证(定义)指求(解三角形);方法二:(向量法),其中是异面直线所成的角,分别是直线的方向向量.6、C【解析】

根据导函数图象,确定出函数的单调区间和极值,从而可得结论.【详解】根据的图象可知,当或时,,所以函数在区间和上单调递增;当时,,所以函数在区间上单调递减,由此可知函数在和处取得极值,并且在处取得极大值,在处取得极小值,所以的图象最有可能的是C.故选:C.本题考查导数与函数单调性、极值的关系,考查数形结合思想和分析能力.解决此类问题,要根据导函数的图象确定原函数的单调区间和极值,一定要注意极值点两侧导数的符号相反.7、B【解析】由题意可知:SM=20,∠NMS=45°∴SM与正东方向的夹角为75°,MN与正东方向的夹角为60°,∴SNM=105°,∠MSN=30°∆MNS中利用正弦定理可得MNMN=∴货轮的速度v=故选B8、D【解析】

根据可画出满足题意的点所构成的平面区域;分别求解区域各个构成部分的面积,加和得到结果.【详解】由定义可知,若曲线为边长为的等边三角形,则满足题意的点构成如下图所示的阴影区域其中,,,,,,又又阴影区域面积为:即点集所表示的图形的面积为:本题正确选项:本题考查新定义运算的问题,关键是能够根据定义,找到距离等边三角形三边和顶点的最小距离小于等于的点所构成的区域,易错点是忽略三角形内部的点,造成区域缺失的情况.9、C【解析】

利用定积分求出阴影部分区域面积关于的函数,再利用导数求出该函数的最小值,可得出结果.【详解】设阴影部分区域的面积为,则,,其中,令,得,当时,;当时,.所以,函数在处取得极小值,亦即最小值,且最小值为,因此,阴影部分区域面积的最小值为,故选C.本题考查利用定积分计算曲边多边形的面积,考查利用导数求函数的最值,在利用定积分思想求曲边多边形的面积时,要确定被积函数和被积区间,结合定积分公式进行计算,考查计算能力,属于中等题.10、B【解析】当α⊥β时,平面α内的直线m不一定和平面β垂直,但当直线m垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m⊥β”的必要不充分条件.11、B【解析】

首先判断奇偶性:A,B为偶函数,C为奇函数,D既不是奇函数也不是偶函数,所以排除C、D,对于先减后增,排除A,故选B.考点:函数的奇偶性、单调性.12、D【解析】

先求,再求模.【详解】∵,,∴,∴.故选:D.本题考查空间向量模的坐标运算,掌握空间向量模的坐标运算公式是解题基础.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用消去参数可得普通方程。【详解】由题意,即,又,∴所求普通方程为。故答案为:。本题考查参数方程化为普通方程,应用消元法可得,但要注意变量的取值范围,否则会出错。14、【解析】由函数图象的变换可知,的图象过定点,的图象过定点,的图象过定点,所以,的图象过定点.考点:指数函数的图象,函数图象的平移、伸缩变换.15、-2.【解析】分析:画出可行域,将变形为,平移直线由图可知当直经过点时,直线在轴上的截距最小,根据的最小值为列方程求解即可.详解:画出表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最小,根据的最小值为可得,解得,故答案为.点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、【解析】将直线及圆分别化成直角坐标方程:,.利用点到直线距离求出圆心到直线的距离为1.∴长等于三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)“三次试验中至少两次试验成功”是指三次试验中,有2次试验成功或3次试验全部成功,先计算出2次与3次成功的概率,相加即可得到所要求的概率.(2)分成功3次,4次两种情况求其概率相加即可【详解】(1)设“甲小组做了三次实验,至少两次试验成功”为事件A,则其概率为.(2)设“甲乙两小组试验成功3次”为事件B,则,设“甲乙两小组试验成功4次”为事件C,则,故两个小组试验成功至少3次的概率为.本题考查概率的求法,考查n次独立重复试验某事件恰好发生k次的概率、相互独立事件的概率乘法公式,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.18、(1);(2)【解析】试题分析:⑴由题意可知当时直线经过定点,设,即可求出曲线的普通方程;⑵将代入直线的参数方程,可求出直线的普通方程,将代入即可求得直线的极坐标方程,然后联立曲线:,即可求出直线与曲线的交点的极坐标解析:(1)直线经过定点,由得,得曲线的普通方程为,化简得;(2)若,得的普通方程为,则直线的极坐标方程为,联立曲线:.∵得,取,得,所以直线与曲线的交点为.19、(Ⅰ),(Ⅱ)【解析】

(Ⅰ)根据极坐标与直角坐标的互化公式,即可求得直线的直角坐标方程,消去参数,即可求得曲线的普通方程;(Ⅱ)求得直线的参数方程,代入椭圆的方程,利用直线参数的几何意义,即可求解.【详解】(Ⅰ)由直线极坐标方程为,根据极坐标与直角坐标的互化公式,可得直线直角坐标方程:,由曲线的参数方程为(为参数),则,整理得,即椭圆的普通方程为.(Ⅱ)直线的参数方程为,即(为参数)把直线的参数方程代入得:,故可设,是上述方程的两个实根,则有又直线过点,故由上式及的几何意义得:.本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数的应用,着重考查了推理与运算能力,属于基础题.20、(1).【解析】

(1)由命题得命题由命题为真,得为真命题或为真命题,列m的不等式求解即可;(2)由命题为真,为假判断均为真命题或均为假命题,分情况列出m的不等式组求解即可.【详解】,(1)由于为真命题,故为真命题或为真命题,从而有或,即.(2)由于为真命题,为假命题,所以均为真命题或均为假命题,从而有或,解得即:.本题考查命题真假,注意命题p焦点在y轴上审题要注意,对于命题p,q的真假判断要准确.21、见解析.【解析】分析:对a分五种情况讨论,分别利用一元一次不等式与一元二次不等式的解法求解即可.详解:①当a=0时,x<-1;②当a≠0时:1∘a>0,ax2故等式左边因式分解得:ax-1x+12∘当-1<a<0时,-ax+13∘当a=-1时,x4∘当a<-1时,-ax+1点睛:本题主要考查一元二次不等式的解法、分类讨论思想的应用.属于中档题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.22、(1);(2).【解析】

(1)由于f(x)=|x+1|﹣|x﹣2|,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论