



付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3平面向量的基本定理及坐标表示(1)(教学设计)2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示[教学目标]一、知识与能力:1.了解平面向量基本定理。2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示;3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.二、过程与方法:体会数形结合的数学思想方法;培养学生转化问题的能力.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算教学难点:平面向量基本定理.一、复习回顾:1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=2.运算定律结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+)=λ+λ3.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.二、师生互动,新课讲解:思考:给定平面内任意两个向量e1,e2,请作出向量3e1+2e2、e1-2e2,平面内的任一向量是否都可以用形如1e1+2e2的向量表示呢?.在平面内任取一点O,作e1,e2,a,过点C作平行于直线OB的直线,与直线OA交于点M;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数1、2,使得1e1,2e2.由于,所以a=1e1+2e2,也就是说任一向量a都可以表示成1e1+2e2的形式.1.平面向量基本定理(1)定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使得a=1e1+2e2.把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.(2)向量的夹角已知两个非零向量a和b,作=a,=b,则AOB=(0180)叫做向量a与b的夹角,当=0时,a与b同向;当=180时,a与b反向.如果a与b的夹角是90,则称a与b垂直,记作ab.例1(课本P94例1)已知向量e1、e2,求作向量-2.5e1+3e2。解:变式训练1:如图在基底e1、e2下分解下列向量:解:,,,2.平面向量的正交分解及坐标表示(1)正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.(2)向量的坐标表示思考:我们知道,在平面直角坐标系中,每一个点都可以用一对有序实数(即它的坐标)表示,对平面直角坐标系内的每一个向量,如何表示呢?在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,则对于平面内的一个向量a,有且只有一对实数x、y使得a=xi+yj,把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,显然,i=(1,0),j=(0,1),0=(0,0).(3)向量与坐标的关系思考:与a相等的向量坐标是什么?向量与向量坐标间建立的对应关系是什么对应?(多对一的对应,因为相等向量对应的坐标相同)当向量起点被限制在原点时,作=a,这时向量的坐标就是点A的坐标,点A的坐标也就是向量的坐标,二者之间建立的一一对应关系.例2(课本P96例2)如图,分别用基底i、j表示向量a、b、c、d,并求出它们的坐标.解:a=2i+3j=(2,3),b=-2i+3j=(-2,3)c=-2i-3j=(-2,-3)d=2i-3j=(2,-3).变式训练2:在直角坐标系xOy中,向量a、b、c的方向和长度如图所示,分别求他们的坐标.解:设a=(a1,a2),b=(b1,b2),c=(c1,c2),则a1=|a|cos45=,a2=|a|sin45=;b1=|b|cos120=,b2=|b|sin120;c1=|c|cos(-30)=,c2=|c|sin(-30)=,因此.例3:已知是坐标原点,点在第一象限,,,求向量的坐标.解:设点,则即,所以.变式训练3:如图,e1、e2为正交基底,分别写出图中向量a、b、c、d的分解式,并分别求出它们的直角坐标.解:a=2e1+3e2=(2,3),b=-2e1+3e2=(-2,3),c=-2e1-3e2=(-2,-3),d=2e1-3e2=(2,-3).三、课堂小结,巩固反思:1.平面向量基本定理;2.平面向量的正交分解;3.平面向量的坐标表示.四、课时必记:1、平面向量的基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使得功a=1e1+2e2.把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.2、当向量起点被限制在原点时,作=a,这时向量的坐标就是点A的坐标,点A的坐标也就是向量的坐标,二者之间建立的一一对应关系.五、分层作业:A组:1、设e1、e2是同一平面内的两个向量,则有()A.e1、e2一定平行B.e1、e2的模相等C.同一平面内的任一向量a都有a=λe1+μe2(λ、μ∈R)D.若e1、e2不共线,则同一平面内的任一向量a都有a=λe1+ue2(λ、u∈R)2、已知矢量a=e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c=6e1-2e2的关系A.不共线B.共线C.相等D.无法确定3、已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()A.3B.-3C.0D.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土方施工安全与技术方案
- 锂电材料项目社会稳定风险评估报告
- 项目人员培训与技术支持方案
- 工程项目质量整改与验收方案
- 水厂及配套管网项目社会稳定风险评估报告
- 第17章 实现数据库编程
- 2025年药品质量抽查结果分析总结范文整改措施整改报告范文
- 建筑防水工程施工队伍培训与管理方案
- 函授自考考试题目及答案
- 热力设备安装与调试方案
- 镜架购销合同模板
- 第二届“强国杯”技术技能大赛-工业大数据管理与分析赛项考试题库(含答案)
- 徐州市城市轨道交通1号线一期工程电动客车运营、修理及维护手册
- 制作并观察植物细胞临时装片教学设计(五篇模版)
- 信息推广服务合同范例
- 《大气的组成和垂直分层》
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 第一次月考试卷(月考)-2024-2025学年三年级上册数学人教版
- SMP-05-004-00 受托方化验室监督管理规程
- CJT 399-2012 聚氨酯泡沫合成轨枕
- 中小微企业FTTR-B全光组网解决方案
评论
0/150
提交评论