双曲线教学设计_第1页
双曲线教学设计_第2页
双曲线教学设计_第3页
双曲线教学设计_第4页
双曲线教学设计_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数的图像和性质(第二课时)一、教材分析:本节课是反比例函数的图像和性质的第二课时,其探究的主要内容是反比例函数的性质。它是在第二十一章对函数进行初步认识的基础上,借助于第二十三章研究正比例函数及一次函数的图像及性质的经验和方法,较系统地研究反比例函数的图像、性质的。本节课在教学内容上起着承上启下的作用。通过本节的学习,可使学生提高对函数模型的进一步认识和理解,加深对数形结合思想方法的进一步体会,为研究二次函数的图像和性质奠定基础。二、教学目标:(一)知识与技能1.能根据函数表达式、表格和图像探索并理解反比例函数的性质。2.会用反比例函数的面积不变性解决有关问题。(二)过程与方法经历探索反比例函数性质及图像的特殊性的过程,发展观察、分析、归纳和概括的能力,进一步体会数形结合的思想方法,提高学生解决问题的能力。(三)情感态度价值观通过对反比例函数性质的探究和运用,使学生感受数学思考过程中的合理性、数学的严谨性,认识事物的相互联系,学会分析事物。三、教学重点:反比例函数的性质。四、教学难点:从反比例函数的三种表示(图像、表格和表达式)探索到反比例函数的性质。五、教学过程:教学环节教师活动学生活动设计说明创设情景以旧探新1、回顾与思考1(多媒体投影展示)正比例函数与反比例函数的对比函数正比例函数反比例函数图像及名称直线双曲线解析式y=kx(k≠0)y=k/x(k≠0)图像的位置k>0时,在一、三象限k<0时,在二、四象限性质k>0时,y随x增大而增大k<0时,y随x增大而减小2、回顾与思考2(多媒体投影展示)(1)反比例函数的图像与坐标轴有交点吗?为什么?(2)反比例函数的图像在哪些象限,其增减性是怎样的?本节就让我们一起来学习吧!学生思考,填表。(1)题学生思考,回答。(2)题学生存有疑问,留待以下解决。通过对正比例函数图像及其性质的复习,为引入反比例函数的图像及性质作铺垫,做到自然过渡,完成由正比例函数到反比例函数的知识迁移,从而引出课题。尝试发现尝试发现探索新知探究活动(多媒体展示问题)下图是反比例函数y=6/x,y=2/x,y=-6/x,y=-2/x的图像。yyy=2/xOxOxyyy=-OxOx观察上图中的反比例函数的图像:(1)反比例函数y=6/x和y=2/x的图像分别位于哪两个象限内?反比例函数y=-6/x和y=-2/x的图像分别位于哪两个象限内?反比例函数y=k/x的图像所在的象限和k是正数还是负数有什么关系?(2)反比例函数所在的象限由k的取值决定,你能根据k的取值做出反比例函数的大致图像吗?(3)对于y=k/x,分别就k>0和k<0,探究当x增大时,y的变化情况。(4)对于反比例函数y=k/x中,y随x的变化而变化的规律,我们除了可以从图像上直接观察得到之外,还可以怎样得到?(巡视、指导,根据回答情况,及时鼓励表扬)2.想一想,试一试通过对以上问题的探讨,你能总结出反比例函数y=k/x(k≠0)的图像都有哪些性质吗?反比例函数y=k/x(k≠0)的图像性质:(投影展示)反比例函数y=k/x,当k>0时,图像位于第一、三象限,在每一象限内,y的值x值的增大而减小;当k<0时,图像位于第二、四象限,在每一象限内,y的值随x值的增大而增大。学生观察分析,合作交流,分组讨论。小组代表发言。问题(2)由学生自己动手画图,多媒体展台展示学生作品。由学生自己进行总结,并说出结论。通过对反比例函数图像的观察、分析、归纳,初步感知双曲线的特征,为下一步总结反比例函数的性质埋下伏笔。这个环节的问题设计是为了让学生明确本节课的学习任务,起到了提纲挈领的作用。探究活动让学生自己观察、动手,亲历反比例函数的性质这个知识的发生过程,并通过观察、猜想经历知识的发展形成过程,体验了“发现”知识的快乐,变被动接受为主动探究。强化新知巩固提高强化新知

巩固提高尝试发现探索新知随堂练习一:1.函数y=5/x的图像位于第_____象限,在每一象限内,y的值随x的增大而______,当x>0时,y___0,这部分图像位于第_____象限。2.若反比例函数y=k-1/x的图像在第二、四象限内,则k的取值范围是()A、k>1B、k≤1C、k≥3.下列函数中,图像位于第二、四象限的有_______;在图像所在象限内,y的值随x的增大而增大的有_______。随堂练习二:xy0y1xy0y(1)(2)2.已知点A(-2,y1),B(-1,y2)都在反比例函数y=4/x的图像上,则y1与y2的大小关系为_______。3.已知点A(-2,y1),B(-1,y2)都在反比例函数y=k/x(k<0)的图像上,则y1与y2的大小关系为_____。4.已知点A(-2,y1)、B(-1,y2)、C(4,y3)都在反比例函数y=k/x(k<0)的图像上,则y1、y2与y3的大小关系为__________。随堂练习三:1.函数y=kx+k与y=k/x同一条直角坐标系中的图像可能是()xxyoxyoxyoxyo(A)(B)(C)(D)2.若正比例函数y=kx与反比例函数y=k/x的图像都随x的增大而增大,那么它们在同一直角坐标系中的大致图像是()oo面积不变性(多媒体投影展示问题)1.如图,点Q是反比例函数y=2/x图像上的一点,QP⊥x轴于D,则△POQ的________2.如图,点P是反比例函数图像上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是_______.yPMQOx教师多媒体投影展示结论(结论:面积不变性)设A是反比例函数y=k/x(k≠0)图象上的任意一点,过A点分别作x轴,y轴的垂线AM,AN,则所得矩形NOMA的面积为︱k︱。三角形AOM的面积为︱k︱/2。反之,已知矩形或三角形的面积,也可以求反比例函数的解析式。学生独立思考回答。学生之间可以讨论与交流,强调学生之间的合作。学生独立思考或小组合作,由学生表述自己的思路。学生总结新的知识点,找到反比例函数图像的特殊性,即面积不变性。随堂练习分三组,难度拾级而上,由浅入深,体现知识呈现的序列性。在进行本题组3,4题训练时,注意引导学生除了选取特殊的值代入求y值,还可以根据图像去判断,从而得出比较y值大小的两种常用方法:特值法和图像法。要求学生说出解题思路,锻练学生解决问题的方法的多样性。让学生继续动手、演算,亲历知识的发生、发展过程,体会运用“观察——分析——猜想——验证——推理”的研究方法,并在探究的过程中学会与人合作。强化新知巩固提高随堂练习,反馈评价(多媒体出示习题)1.如图,点P是x轴正半轴上的一个动点,过点P作x轴的垂线PQ交双曲线于点Q,连接OQ,当点P沿x轴的正方向运动时,Rt△OPQ的面积()A逐渐增大B逐渐减小C保持不变D无法确定2.如图,A,B,C是反比例函数的图像在第二象限的分支上的三点,过A,B,C三点分别作两坐标轴的垂线,D,E,F和H,N,K是垂足,矩形ADOH,矩形BEON,矩形CFOP的面积S1,S2,S3的大小有什么关系?为什么?AHBNCKDEFOx学生独立思考,回答问题。此环节主要是考查学生对反比例函数图像特殊性,面积不变性的理解与掌握。反思小结系统升华课堂小结,理顺知识(多媒体投影展示)本节课——我学会了……使我感触最深的是……我感到收获最大的是……结合学生所述,教师给予指导,对学生的发言及时鼓励;同时用多媒体展示出正比例函数和反比例函数的系统对照表格。(多媒体展示表格)正比例函数与反比例函数的对比函数正比例函数反比例函数图像解析式y=kx(k≠0)y=k/x(k≠0)自变量取值范围全体实数x≠0的一切实数图像的位置k>0时,在一、三象限k>0时,在一、三象限k<0时,在二、四象限k<0时,在二、四象限性质k>0时,y随x增大而增大k>0时,y随x增大而减小k<0时,y随x增大而减小k<0时,y随x增大而增大学生独立思考、自我反思与小组合作交流、互相提问相结合,教师适时点拨总结。观察、理解、记忆。从所学的知识、探究的方法、数学学习方法等多个角度去回顾、总结。通过对比使学生能把学过的相关知识有机地串联起来,有利于理解、记忆和应用。中考链接志在必得布置作业走进中考,施展空间:多媒体投影展示1.(20XX年德州中考)已知反比例函数y=k/x的图像经过点(﹣1,2),则它的图像一定过点()A(﹣2,﹣1)B(﹣1/2,2)C(2,﹣1)D(1/2,2)2.(20XX年大连课改)如图,双曲线y=k/x与直线y=mx相交于AB两点,A点坐标(2,3),则B点坐标为()。3.(2006黄冈)己知函数的图像是双曲线,且在每一个象限内,y随x的增大而增大,则m=()1、必做题:课本100页习题1.2.3.

2(选做)、在直角坐标系中,直线y=x+m-1与双曲线y=m/x.在第一象限交于点A,与x轴交于点C,AB垂直于x轴,垂足为B,且S△AOB=2BxBxACyxOyo(2)求△ABC的面积。动手练习课后有择的完成中考题的练习,可以让学生感到中考并不都是难题,在于平时识的积累。分层布置作业:必做题促进知识的巩固;选做题提高学生思维的深度及广度及发散思维,为下节课打下铺垫、埋下伏笔。六、教法、学法分析:根据课堂学习的内容特点,本节课在合理选择教法的同时,注重对学生学法的指导。主要的教学方法及学生的学法如下:1、引导启发:本节课的教学中,教师所起的作用不再是一味“传授”,而是巧妙地创设问题情境,以问题的形式启发学生发现、解决问题,在学生思维受阻时给予适当引导。2、自主探究:在教师的配合引导下,让学生经过动手、动脑、观察、分析、合作交流、猜想,归纳出反比例函数的性质。然后再进行实践应用,使每个学生经历数学知识的发生、发展、形成的全过程,从而变被动接受为主动探究,增进对函数图像及其性质的理解和学数学的信心。3、合作学习:教学中鼓励学生积极合作,充分交流,帮助学生在学习活动中获得最大的成功,促使学生学习方式的改变。七、教学评价分析:1、对学生数学学习效果的评价,既要关注学生知识和技能的理解和掌握,更要关注他们情感与态度的形成与发展;既要关注数学学习的结果,更要关注他们在学习过程中的变化与发展。在教学过程的各个环节中,把学生自我评价、学生互评、教师评价结合起来,实现评价主体的多样化。课堂中采用口答、课堂观察、实验、书面作业等评价方式,多层面了解学生。尊重学生的个体差异,对不同程度的学生提出不同的要求。2、在整个教学过程中,通过学生参与数学活动的程度、自信心、合作交流的意识,独立思考的习惯,以及回答问题的积极性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论