2025年南昌县高三第二次模拟考试数学试卷含解析_第1页
2025年南昌县高三第二次模拟考试数学试卷含解析_第2页
2025年南昌县高三第二次模拟考试数学试卷含解析_第3页
2025年南昌县高三第二次模拟考试数学试卷含解析_第4页
2025年南昌县高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年南昌县高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤2.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,3.已知集合A,则集合()A. B. C. D.4.已知,,,则的最小值为()A. B. C. D.5.设(是虚数单位),则()A. B.1 C.2 D.6.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.47.设为等差数列的前项和,若,,则的最小值为()A. B. C. D.8.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A. B. C. D.9.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或910.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.11.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.512.已知复数是正实数,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是一个几何体的三视图,若它的体积是,则_________,该几何体的表面积为_________.14.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.15.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.16.展开式中项的系数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.18.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.(1)求的值;(2)若的面积为求的值.19.(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.20.(12分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.21.(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.22.(10分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.2.D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.3.A【解析】

化简集合,,按交集定义,即可求解.【详解】集合,,则.故选:A.本题考查集合间的运算,属于基础题.4.B【解析】,选B5.A【解析】

先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.【详解】∵,∴.故选:A.本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题.6.A【解析】

采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.7.C【解析】

根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.8.D【解析】

设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故选:D本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.9.C【解析】

由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.本题主要考查两个向量的数量积的定义和公式,属于基础题.10.C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.11.B【解析】

还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.12.C【解析】

将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C本题考查复数的基本定义,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1.三视图;2.几何体的表面积.14.【解析】

根据圆柱的体积为,以及圆锥的体积公式,计算即得.【详解】由题得,,得.故答案为:本题主要考查圆锥体的体积,是基础题.15.1【解析】

根据正态分布对称性,求得质量低于的袋数的估计值.【详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:本小题主要考查正态分布对称性的应用,属于基础题.16.-20【解析】

根据二项式定理的通项公式,再分情况考虑即可求解.【详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:本题主要考查二项式定理的应用,注意分情况考虑,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)定值为0.【解析】

(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.18.(1);(2).【解析】

(1)根据成等差数列与三角形内角和可知,再利用两角和的正切公式,代入化简可得,同理根据三角形内角和与余弦的两角和公式与等比数列的性质可求得,联立即可求解求的值.(2)由(1)可知,再根据同角三角函数的关系与正弦定理可求得,再结合的面积为利用面积公式求解即可.【详解】解:成等差数列,可得而,即,展开化简得,因为,故①又成等比数列,可得,即,可得联立解得(负的舍去),可得锐角;由可得,由为锐角,解得,因为为锐角,故可得,由正弦定理可得,又的面积为可得,解得.本题主要考查了等差等比中项的运用以及正切的和差角公式以及同角三角函数关系等.同时也考查了正弦定理与面积公式在解三角形中的运用,属于中档题.19.(1)整数的最大值为;(2)见解析.【解析】

(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,,令,对恒成立,所以,函数在上单调递增,,,,,故存在使得,即,从而当时,有,,所以,函数在上单调递增;当时,有,,所以,函数在上单调递减.所以,,,因此,整数的最大值为;(2)由(1)知恒成立,,令则,,,,,上述等式全部相加得,所以,,因此,本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题.20.(1)(2)【解析】

(1)先利用同角的三角函数关系求得,再由求解即可;(2)在中,由正弦定理可得,则,再由求解即可.【详解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因为,所以,因为,所以,所以.本题考查已知三角函数值求值,考查正弦定理的应用.21.(1);(2).【解析】

(1)由可得出,两式作差可求得数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,,即,;当时,,即,.所以,数列的最小项为.本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属于中等题.22.(1),,直线的倾斜角为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论