版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一组数据3、-2、0、1、4的中位数是()A.0 B.1 C.-2 D.42.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=3.如果二次三项式x2+kx+64是一个整式的平方,且k<0,那么k的值是()A.﹣4 B.﹣8 C.﹣12 D.﹣164.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.255.在中,的对边分别是,下列条件中,不能说明是直角三角形的是()A. B.C. D.6.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或17.已知如图,等腰中,于点,点是延长线上一点,点是线段上一点,下面的结论:①;②是等边三角形;③;④.其中正确的是()A.①②③ B.①②④ C.①③④ D.①②③④8.在投掷一枚硬币次的试验中,“正面朝下”的频数,则“正面朝下”的频率为()A. B. C. D.9.下列实数中,无理数是()A.3.14 B.2.12122 C. D.10.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-6和-5之间 B.-5和-4之间 C.-4和-3之间 D.-3和-2之间11.如图,△ABC中,AB=10,BC=12,AC=,则△ABC的面积是().A.36 B. C.60 D.12.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地,设第二组的步行速度为x千米/小时,根据题意可列方程是().A. B.C. D.二、填空题(每题4分,共24分)13.已知,则的值是_________.14.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.15.在△ABC中,AB=15,AC=13,高AD=12,则的周长为_______________.16.若分式的值为0,则的值是_____.17.若分式方程有增根,则的值为__________.18.若,,则________.三、解答题(共78分)19.(8分)如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.20.(8分)若,求的值.21.(8分)如图,点C在线段AF上,AB∥FD,AC=FD,AB=FC,CE平分∠BCD交BD于E.求证:(1)△ABC≌△FCD;(2)CE⊥BD.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上求作一点P,使△PAC的周长最小,并直接写出P的坐标.23.(10分)如图,,点、分别在、上运动(不与点重合).(1)如图1,是的平分线,的反方向延长线与的平分线交于点.①若,则为多少度?请说明理由.②猜想:的度数是否随、的移动发生变化?请说明理由.(2)如图2,若,,则的大小为度(直接写出结果);(3)若将“”改为“()”,且,,其余条件不变,则的大小为度(用含、的代数式直接表示出米).24.(10分)如图,AB∥CD,AE=DC,AB=DE,EF⊥BC于点F.求证:(1)△AEB≌△DCE;(2)EF平分∠BEC.25.(12分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.26.如图,AB∥CD,直线EF分别交直线AB、CD于点M、N,MG平分∠EMB,MH平分∠CNF,求证:MG∥NH.
参考答案一、选择题(每题4分,共48分)1、B【分析】将这组数据从小到大重新排列后为-2、0、1、3、4;最中间的那个数1即中位数.【详解】解:将这组数据从小到大重新排列后为-2、0、1、3、4;最中间的那个数1即中位数.故选:B本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.2、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.3、D【分析】利用完全平方公式,可推算出.【详解】解:∵,∴,解得k=±1,因为k<0,所以k=﹣1.故选:D.本题考查完全平方公式,掌握完全平方公式为本题的关键.4、C【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.5、C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A、由得a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B、由得∠C+∠B=∠A,此时∠A是直角,能够判定△ABC是直角三角形,不符合题意;C、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,故此选项符合题意;D、a:b:c=5:12:13,此时c2=b2+a2,符合勾股定理的逆定理,△ABC是直角三角形,不符合题意;故选:C.此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.6、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.7、A【分析】①连接BO,根据等腰三角形的性质可知AD垂直平分BC,从而得出BO=CO,又OP=OC,得到BO=OP,再根据等腰三角形的性质可得出结果;②证明∠POC=60°,结合OP=OC,即可证得△OPC是等边三角形;③在AC上截取AE=PA,连接PE,先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;④根据∠APO=∠ABO,∠DCO=∠DBO,因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°-∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°-(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故②正确;
③如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°-∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,故③正确;④由①中可得,∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故④不正确;故①②③正确.
故选:A.本题主要考查了等腰三角形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.8、A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可.【详解】解:“正面朝下”的频数,则“正面朝下”的频率为,故答案为:A.本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法.9、C【解析】根据无理数的三种形式,结合选项找出无理数的选项.【详解】3.14和2.12122和都是分数,是有理数;无理数是,故选:C.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10、A【解析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【详解】∵点P坐标为(-4,3),点B(-1,0),
∴OB=1,
∴BA=BP==3,
∴OA=3+1,
∴点A的横坐标为-3-1,
∵-6<-3-1<-5,
∴点A的横坐标介于-6和-5之间.
故选A.本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.11、A【分析】作于点D,设,得,,结合题意,经解方程计算得BD,再通过勾股定理计算得AD,即可完成求解.【详解】如图,作于点D设,则∴,∴∵AB=10,AC=∴∴∴∴△ABC的面积故选:A.本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.12、D【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【详解】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,
第一组到达乙地的时间为:7.5÷1.2x;
第二组到达乙地的时间为:7.5÷x;
∵第一组比第二组早15分钟(小时)到达乙地,
∴列出方程为:.故选:D.本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.二、填空题(每题4分,共24分)13、18【分析】根据平方和算术平方根的非负性可得a和b的值,代入可得的值.【详解】解:∵,∴a-3=0,b+4=0,∴a=3,b=-4,代入,=18.故答案为:18.本题考查了代数式求值,解题的关键是通过平方和算术平方根的非负性得出a和b的值.14、20°【分析】根据可得出,再利用三角形外角的性质得出,然后利用得出,最后利用三角形内角和即可求出答案.【详解】故答案为:20°.本题主要考查等腰三角形的性质及三角形外角的性质,内角和定理,掌握等腰三角形的性质是解题的关键.15、32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴,∵∠D=90°,AB=15,AD=12,∴,∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴,∵∠ADB=90°,AB=15,AD=12,∴,∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.16、1【解析】分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.【详解】∵分式的值为0,∴,∴x=1.故答案是:1.考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.17、【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到,然后将的值代入整式方程求出的值即可.【详解】∵∴∵若分式方程有增根∴∴故答案是:本题考查了分式方程的增根,掌握增根的定义是解题的关键.18、1【分析】根据同底数幂的除法法则,用除以,求出的值是多少即可.【详解】解:.故答案为:1.此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.三、解答题(共78分)19、24m2【分析】连接AC,利用勾股定理和逆定理可以得出△ACD和△ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【详解】解:连接AC,由勾股定理可知:AC=,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(米2).本题考查了勾股定理以及勾股定理的逆定理的应用,解题的关键是作出辅助线得到直角三角形.20、.【分析】根据等式的基本性质将已知等式变形,然后利用整体代入法和分式的基本性质约分即可求出分式的值.【详解】解:∵∴a+b=5ab,∴====.此题考查的是求分式的值,掌握等式的基本性质和分式的基本性质是解决此题的关键.21、(1)见解析;(2)见解析【分析】(1)根据SAS即可判定△ABC≌△FCD;(2)由全等三角形的性质得CB=CD,结合等腰三角形的性质定理,即可得到结论.【详解】(1)∵AB∥FD,∴∠A=∠F,又∵AC=DF,AB=FC,∴△ABC≌△FCD(SAS);(2)∵△ABC≌△FCD,∴CB=CD,又∵CE平分∠BCD,∴CE⊥BD.本题主要考查三角形全等的判定和性质定理以及等腰三角形的性质定理,掌握等腰三角形“三线合一”是解题的关键.22、(1)详见解析;(2)图详见解析,P(0,).【分析】(1)根据轴对称的性质进行作图,即可得到△ABC关于y轴的对称图形△A1B1C1;(2)连接A1C交y轴于P,连接AP,则点P即为所求,再根据C(3,4),A1(-1,1),求得直线A1C解析式为y=x+,最后令x=0,求得y的值,即可得到P的坐标.【详解】(1)如图所示,△A1B1C1即为所求;(2)连接A1C交y轴于P,连接AP,则点P即为所求.根据轴对称的性质可得,A1P=AP,∵A1P+CP=A1C(最短),∴AP+PC+AC最短,即△PAC的周长最小,∵C(3,4),A1(﹣1,1),∴直线A1C解析式为y=x+,∴当x=0时,y=,∴P(0,).本题主要考查了运用轴对称变换进行作图,以及待定系数法求一次函数解析式的运用,解决问题的关键是掌握轴对称的性质.解题时注意:两点之间,线段最短.23、(1)①45°,理由见解析;②∠D的度数不变;理由见解析(2)30;(3)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC-∠BAD得出答案.【详解】解:(1)①45°∵∠BAO=60°,∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°∴∠D=∠CBA-∠BAD=45°,②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,
∵∠BAD=∠BAO,
∴∠BAO=3α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+3α,
∵∠ABC=∠ABN,
∴∠ABC=30°+α,
∴∠D=∠ABC-∠BAD=30°+α-α=30°;(3)设∠BAD=β,
∵∠BAD=∠BAO,
∴∠BAO=nβ,
∵∠AOB=α°,
∴∠ABN=∠AOB+∠BAO=α+nβ,
∵∠ABC=∠ABN,
∴∠ABC=+β,
∴∠D=∠ABC-∠BAD=+β-β=.本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.24、(1)见解析;(2)见解析【分析】(1)由SAS即可得出△AEB≌△DCE;(2)由全等三角形的性质得出BE=CE,由等腰三角形的性质即可得出结论.【详解】证明:(1)∵AB∥CD,∴∠A=∠D,在△AEB和△DCE中,,∴△AEB≌△DCE(SAS);(2)∵△AEB≌△DCE,∴BE=CE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蝴蝶知识启蒙
- 高密中医院核心特色解析
- 黑蚁对讲机介绍
- 2025血液科急性淋巴细胞白血病化疗后感染预防培训规范
- 院感空气培养的采样方法
- 消防安全知识课程
- 科技前沿发展概览
- 硫酸镁使用方法
- 喉癌手术麻醉管理要点
- 英诺提拉素注射方法
- 人工智能在智慧港口基础设施中的应用分析
- 2025年山东省公务员考试《行测》考试笔试试题试题解析
- 2025年第一季度西部战区空军医院招聘医师、技师、护士、药师、心理咨询师、协调员等岗位人员29人(四川)考前自测高频考点模拟试题有完整答案详解
- 建筑施工安全隐患排查整改报告范本
- 《月相》课件教学课件
- 学习勤奋的重要性:议论文(5篇)
- 瑞金市2025年公开招聘城市社区工作者【46人】考试参考试题及答案解析
- 2025年兵团线上考试试题及答案
- DeepSeek大模型赋能高校教学和科研建议收藏
- 安全生产法(2025年修订版)
- 2025-2026学年高二上学期第一次月考英语试卷01(江苏)
评论
0/150
提交评论