




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.函数的自变量的取值范围是()A. B. C.且 D.2.以下四家银行的行标图中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.计算(﹣2x2y3)•3xy2结果正确的是()A.﹣6x2y6 B.﹣6x3y5 C.﹣5x3y5 D.﹣24x7y54.“2的平方根”可用数学式子表示为()A. B. C. D.5.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m26.无论、取何值,多项式的值总是()A.正数 B.负数 C.非负数 D.无法确定7.已知一个等腰三角形的两边长a、b满足方程组则此等腰三角形的周长为()A.5 B.4 C.3 D.5或48.勿忘草是多年生草本植物,它拥有世界上最小的花粉勿忘草的花粉直径为1.111114米,数据1.111114用科学记数法表示为()A.4115B.4116C.411-5D.411-69.若m<n<0,那么下列结论错误的是()A.m﹣9<n﹣9 B.﹣m>﹣n C. D.2m<2n10.如图,是的角平分线,,,垂足分别为点,连接,与交于点,下列说法不一定正确的是()A. B. C. D.11.如图,直线经过点,则不等式的解集为()A. B. C. D.12.下面各组数据中是勾股数的是()A.0.3,0.4,0.5 B.5,12,13C.1,4,9 D.5,11,12二、填空题(每题4分,共24分)13.命题:“三边分别相等的两个三角形全等”的逆命题________14.在△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________.15.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).16.已知C、D两点在线段AB的中垂线上,且,,则______.17.如图,在若中,是边上的高,是平分线.若则=_____18.在平面直角坐标系中,已知一次函数y=x−1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”)三、解答题(共78分)19.(8分)解下列分式方程(1)(2)20.(8分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.21.(8分)随着智能手机的普及,微信抢红包已成为春节期间人们最喜欢的活动之一,某校七年级(1)班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.请根据以上信息回答:(1)该班同学所抢红包金额的众数是______,中位数是______;(2)该班同学所抢红包的平均金额是多少元?(3)若该校共有18个班级,平均每班50人,请你估计该校学生春节期间所抢的红包总金额为多少元?22.(10分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若,求图2中的空白正方形的面积.(3)观察图2,用等式表示出,ab和的数量关系.23.(10分)如图,,点在上.(1)求证:平分;(2)求证:.24.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC,点D,E分别在边AC,BC上,CD=CE,连接AE,点F,H,G分别为DE,AE,AB的中点连接FH,HG(1)观察猜想图1中,线段FH与GH的数量关系是,位置关系是(2)探究证明:把△CDE绕点C顺时针方向旋转到图2的位置,连接AD,AE,BE判断△FHG的形状,并说明理由(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若CD=4,AC=8,请直接写出△FHG面积的最大值25.(12分)数学课上,李老师出示了如下的题目:如图1,在等边中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由,(1)小敏与同桌小聪探究解答的思路如下:①特殊情况,探索结论,当点为的中点时,如图2,确定线段与的大小关系,请你直接写出结论:______.(填>,<或=)②特例启发,解答题目,解:题目中,与的大小关系是:______.(填>,<或=)理由如下:如图3,过点作,交于点,(请你补充完成解答过程)(2)拓展结论,设计新题,同学小敏解答后,提出了新的问题:在等边中,点在直线上,点在直线上,且,已知的边长为,求的长?(请直接写出结果)26.如图,为边长不变的等腰直角三角形,,,在外取一点,以为直角顶点作等腰直角,其中在内部,,,当E、P、D三点共线时,.下列结论:①E、P、D共线时,点到直线的距离为;②E、P、D共线时,;;④作点关于的对称点,在绕点旋转的过程中,的最小值为;⑤绕点旋转,当点落在上,当点落在上时,取上一点,使得,连接,则.其中正确结论的序号是___.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0,列出不等式即可得出结论.【详解】解:由题意可知:解得:且故选C.此题考查的是求自变量的取值范围,掌握二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0是解决此题的关键.2、C【解析】试题分析:根据轴对称图形的定义可知:第1个行标是轴对称图形;第2个行标不是轴对称图形;第3个行标是轴对称图形;第4个行标是轴对称图形;所以共3个轴对称图形,故选C.考点:轴对称图形3、B【解析】根据单项式乘单项式法则直接计算即可.【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,故选:B.本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.4、A【分析】根据a(a≥0)的平方根是±求出即可.【详解】解:2的平方根是故选:A.本题考查平方根的性质,正确理解平方根表示方法是解本题的关键.5、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.6、A【分析】利用完全平方公式把多项式分组配方变形后,利用非负数的性质判断即可.【详解】解:∵≥1>0,∴多项式的值总是正数.故选:A.本题考查了利用完全平方公式化简多项式,熟练掌握并灵活运用是解题的关键.7、A【解析】试题分析:解方程组得:所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以这个等腰三角形的周长为2.故选A.考点:1.等腰三角形的性质;2.解二元一次方程组.8、D【解析】根据科学记数法的性质以及应用进行表示即可.【详解】故答案为:D.本题考查了科学记数法的应用,掌握科学记数法的性质以及应用是解题的关键.9、C【解析】A:等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可;B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可;C:由倒数的定义即可得出结论;D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.【详解】因为m<n<0,所以m﹣9<n﹣9,A正确;因为m<n<0,所以﹣m>﹣n,B正确;因为m<n<0,所以,C错误;因为m<n<0,所以2m<2n,D正确.故选C.本题考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.10、B【分析】根据角平分线性质得出DE=DF,证出Rt△AED≌Rt△AFD,推出AF=AE,根据线段垂直平分线性质得出即可.【详解】∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,故A选项不符合题意;∵∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵DE=DF,
∴A、D都在线段EF的垂直平分线上,∴EG=FG,故C选项不符合题意;
∴AD⊥EF,故D选项不符合题意;根据已知不能推出EG=AG,故B选项符合题意;故选:B本题考查了线段垂直平分线性质,角平分线性质,全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.11、D【解析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当时,,故选:D.本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.12、B【解析】根据勾股数的定义进行解答即可.【详解】A、∵0.3,0.4,0.5是小数,∴不是勾股数,故本选项错误;B、∵52+122=169=132,∴是勾股数,故本选项正确;C、∵12+42≠92,∴不是勾股数,故本选项错误;D、∵52+112≠122,∴不是勾股数,故本选项错误.故选:B.本题考查勾股数,解题的关键是掌握勾股数的定义.二、填空题(每题4分,共24分)13、如果两个三角形全等,那么对应的三边相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】∵原命题的条件是:三角形的三边分别相等,结论是:该三角形是全等三角形.∴其逆命题是:如果两个三角形全等,那么对应的三边相等.故答案为如果两个三角形全等,那么对应的三边相等.本题考查逆命题的概念,以及全等三角形的判定和性质,解题的关键是熟知原命题的题设和结论.14、140°.【解析】∠C的外角=∠A+∠B=60°+80°=140°.故答案为140°.15、【分析】利用等边三角形的性质和特殊角去解题.【详解】解:等边三角形的周长为1,作于点,的周长=的周长=,的周长分别为故答案为:本题考查等边三角形的性质以及规律性问题的解答.16、或【解析】根据轴对称性可得,,然后利用三角形的内角和定理列式计算即可得解.【详解】解:、D两点在线段AB的中垂线上,
,,
在中,如图1,,
或如图2,.
故答案为:或.考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记线段的轴对称性是解题的关键.17、【分析】根据直角三角形内角和定理求出∠BAC,根据角平分线的定义求出∠BAE,结合图形计算即可.【详解】∵∴∵是平分线∴∵是边上的高,∴∴故答案为:.本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.18、<【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x1即可得出y1<y1,此题得解.【详解】∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x1,∴y1<y1.故答案为<.三、解答题(共78分)19、(1);(2)无解【分析】(1)通过去分母,去括号,移项,合并同类项,未知数系数化为1,检验,即可得到答案;(2)通过去分母,去括号,移项,合并同类项,未知数系数化为1,检验,即可得到答案;【详解】(1),检验:当时,,∴原分式方程的解为:;(2),检验:当时,,∴原分式方程无解.本题主要考查分式方程的解法,掌握解分式方程的基本步骤,是解题的关键.20、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.21、(1)30,30;(2)32.4元;(3)29160元.【分析】(1)由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数;(2)根据加权平均数的计算公式列式求解即可;(3)利用样本平均数乘以该校总人数即可.【详解】(1)捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30.故答案为30,30;(2)该班同学所抢红包的平均金额是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元);(3)18×50×32.4=29160(元).答:估计该校学生春节期间所抢的红包总金额为29160元.此题考查加权平均数,中位数,众数,解题关键在于利用统计图中的数据进行计算.22、(1)2a-b;(2)25;(3)8ab.【分析】(1)根据长方形的长是2a,宽是b,可以得到小正方形的边长是长与宽的的差;(2)从图中可以看出小正方形的面积=大正方形的面积-4个小长方形的面积,再根据2a+b=7求出小正方形的面积;(3)利用平方差公式得到:,ab和之间的关系.【详解】解:(1)图2的空白部分的边长是:2a-b;(2)由图可知,小正方形的面积=大正方形的面积-4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴小正方形的面积=;(3)由图2可以看出,大正方形的面积=空白部分的正方形的面积+四个小长方形的面积即:.考点:1.完全平方公式;2.平方差公式.23、(1)见解析;(2)见解析.【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;
(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【详解】解:(1)在与中,∴∴即平分;(2)由(1)在与中,得∴∴熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.24、(1)FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形,理由见解析;(3)2【分析】(1)直接利用三角形的中位线定理得出FH=GH,再借助三角形的外角的性质即可得出∠FHG=90°,即可得出结论;(2)由题意可证△CAD≌△CBE,可得∠CAD=∠CBE,AD=BE,根据三角形中位线定理,可证HG=HF,HF∥AD,HG∥BE,根据角的数量关系可求∠GHF=90°,即可证△FGH是等腰直角三角形;(3)由题意可得S△HGF最大=HG2,HG最大时,△FGH面积最大,点D在AC的延长线上,即可求出△FGH面积的最大值.【详解】解:(1)∵AC=BC,CD=CE,∴AD=BE,∵点F是DE的中点,点H是AE的中点,∴FH=AD,∵点G是AB的中点,点H是AE的中点,∴GH=BE,∴FH=GH,∵点F是DE的中点,点H是AE的中点,∴FH∥AD,∴∠FHE=∠CAE∵点G是AB的中点,点H是AE的中点,∴GH∥BE,∴∠AGH=∠B,∵∠C=90°,AC=BC,∴∠BAC=∠B=45°,∵∠EGH=∠B+∠BAE,∴∠FHG=∠FHE+∠EHG=∠CAE+∠B+∠BAE=∠B+∠BAC=90°,∴FH⊥HG,故答案为:FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形理由:由旋转知,∠ACD=∠BCE,∵AC=BC,CD=CE,∴△CAD≌△CBE(SAS),∴∠CAD=∠CBE,AD=BE,由三角形的中位线得,HG=BE,HF=AD,∴HG=HF,∴△FGH是等腰三角形,由三角形的中位线得,HG∥BE,∴∠AGH=∠ABE,由三角形的中位线得,HF∥AD,∴∠FHE=∠DAE,∵∠EHG=∠BAE+∠AGH=∠BAE+∠ABE,∴∠GHF=∠FHE+∠EHG=∠DAE+∠BAE+∠ABE=∠BAD+∠ABE=∠BAC+∠CAD+∠ABC﹣∠CBE=∠CBA+∠CAB,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∴∠GHF=90°,∴△FGH是等腰直角三角形;(3)由(2)知,△FGH是等腰直角三角形,HG=HF=AD,∵S△HGF=HG2,∴HG最大时,△FGH面积最大,∴点D在AC的延长线上,∵CD=4,AC=8∴AD=AC+CD=12,∴HG=×12=1.∴S△PGF最大=HG2=2.此题是几何变换综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,三角形的中位线定理,判断出HG⊥FH是解本题的关键.25、(1)①AE=DB;②=;理由见解析;(2)2或1.【分析】(1)①根据等边三角形性质和等腰三角形的性质求出=求出DB=BE,进而得出AE=DB即可;②根据题意结合平行线性质利用全等三角形的判定证得△BDE≌△FEC,求出AE=EF进而得到AE=DB即可;(2)根据题意分两种情况讨论,一种是点在线段上另一种是点在线段的反向延长线上进行分析即可.【详解】解:(1)①∵为等边三角形,点为的中点,∴,,∵,∴,得出,即有,∴,∴AE=DB.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC SRD 63347-1:2025 EN Smart city use case collection and analysis - Managing public health emergencies in smart cities - Part 1: High level analysis
- 新解读《GB-T 30637-2014食用葛根粉》
- 重庆扶贫政策培训课件
- 人教版八年级英语上册单元同步知识点与语法训练 unit1 section A
- 暑假培优练:静电场中的能量(学生版)-2025人教版新高二物理暑假专项提升
- 新解读《GB-T 6323-2014汽车操纵稳定性试验方法》
- DB5333-T 37-2024 草地贪夜蛾监测及防治技术规程
- 《物理学概论》课程简介与教学大纲
- 《大学物理2B》课程简介与教学大纲
- 社会科学研究方法 课件 第十章 个案研究
- 2025年机关事务管理局招聘考试大纲
- 中老年唱歌教学课件下载
- 主城区积水易涝点排水防涝管网更新改造工程可行性分析报告(参考模板)
- 早期现代舞课件
- 碳固持效应研究-洞察及研究
- 2025年北师大新版数学三年级上册第六单元《乘除法的应用(二)》教案
- 口腔医保政策解读
- 2024浙江艺术职业学院单招《数学》模拟题库附答案详解(精练)
- 油菜病虫害防治课件
- 农民农机安全培训课件
- 小学一年级体育上册教案表格式
评论
0/150
提交评论