江苏省淮安市清江浦区2024-2025学年八上数学期末监测试题含解析_第1页
江苏省淮安市清江浦区2024-2025学年八上数学期末监测试题含解析_第2页
江苏省淮安市清江浦区2024-2025学年八上数学期末监测试题含解析_第3页
江苏省淮安市清江浦区2024-2025学年八上数学期末监测试题含解析_第4页
江苏省淮安市清江浦区2024-2025学年八上数学期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列从左到右的变形,属于分解因式的是()A. B. C. D.2.学校为了了解八年级学生参加课外活动兴趣小组的情况,随机抽查了40名学生(每人只能参加一个兴趣小组),将调查结果列出如下统计表,则八年级学生参加书法兴趣小组的频率是()组别书法绘画舞蹈其它人数812119A.0.1 B.0.15 C.0.2 D.0.33.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是()A.2,4,6 B.4,6,8 C.3,4,5 D.6,8,104.下列实数中的无理数是()A.﹣ B.π C.1.57 D.5.下列根式是最简二次根式的是()A. B. C. D.6.如图,,,,则的长度为()A. B. C. D.7.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变大C.平均数不变,方差变小 D.平均数变小,方差不变8.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A.105° B.120° C.135° D.150°9.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛的路程(米)与时间(分钟)之间的函数关系如图所示,请你根据图象判断,下列说法正确的有()①甲队先到达终点;②甲队比乙队多走200米路程;③乙队比甲队少用分钟;④比赛中两队从出发到分钟时间段,乙队的速度比甲队的速度快.A.1个 B.2个 C.3个 D.4个10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]11.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行12.若实数满足,则的值为()A.2或 B. C. D.二、填空题(每题4分,共24分)13.已知,,是的三边,且,则的形状是__________.14.如图,在中,,,的垂直平分线交于点,交于点,则的周长是______.15.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.16.如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠ABC=90°,AB平行x轴,点C在x轴上,若点A,B分别在正比例函数y=6x和y=kx的图象上,则k=__________.17.如图,延长矩形的边至点,使.连接,如果,则等于________度.18.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.三、解答题(共78分)19.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.20.(8分)先化简,再求值:[(4x-y)(2x-y)+y(x-y)]÷2x,其中x=2,y=21.(8分)先化简式子:÷(a+2﹣),再从3,2,0三个数中选一个恰当的数作为a的值代入求值.22.(10分)先化简,再从不大于2的非负整数中选一个恰当的数作为的值代入求值.23.(10分)如图,在中,,高、相交于点,,且.(1)求线段的长;(2)动点从点出发,沿线段以每秒1个单位长度的速度向终点运动,动点从点出发沿射线以每秒4个单位长度的速度运动,两点同时出发,当点到达点时,两点同时停止运动.设点的运动时间为秒,的面积为,请用含的式子表示,并直接写出相应的的取值范围;(3)在(2)的条件下,点是直线上的一点且.是否存在值,使以点为顶点的三角形与以点为顶点的三角形全等?若存在,请直接写出符合条件的值;若不存在,请说明理由.24.(10分)如图所示,若MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.25.(12分)如图,在中,将沿折叠后,点恰好落在的延长线上的点处,若,,求:(1)的周长;(2)的面积.26.如图,一条直线分别与直线、直线、直线、直线相交于点,且,.求证:.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:A.右边不是整式积是形式,故本选项错误;B.不是因式分解,故本选项错误;C.是因式分解,故本选项正确;D.不是因式分解,故本选项错误.故选C.2、C【分析】根据频率=频数数据总和即可得出答案.【详解】解:40人中参加书法兴趣小组的频数是8,

频率是8÷40=0.2,可以用此频率去估计八年级学生参加舒服兴趣小组的频率.

故选:C.本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和,频率=频数数据总和.3、D【分析】根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理即可解答.【详解】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理,得

(x-2)2+x2=(x+2)2,

x2-4x+4+x2=x2+4x+4,

x2-8x=0,

x(x-8)=0,

解得x=8或0(0不符合题意,应舍去),

所以它的三边是6,8,1.故选:D.本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.4、B【分析】无限不循环小数是无理数,根据定义判断即可.【详解】解:A.﹣是分数,属于有理数;B.π是无理数;C.1.57是有限小数,即分数,属于有理数;D.是分数,属于有理数;故选:B.此题考查无理数的定义,熟记定义并运用解题是关键.5、C【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开得尽方的因数,不是最简二次根式,故本选项错误;故选:C.本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开得尽方的因数或因式.6、B【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可.【详解】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3(cm),故选:B.本题考查全等三角形的性质,线段的和差定义等知识,解题的关键是熟练掌握基本知识.7、C【解析】解:=(160+165+170+163+1)÷5=165,S2原=,=(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.8、B【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【详解】∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故选:B.本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.9、A【分析】根据函数图象所给的信息,逐一判断.【详解】①由函数图象可知,甲走完全程需要4分钟,乙走完全程需要3.8分钟,乙队率先到达终点,本选项错误;

②由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;

③因为4-3.8=0.2分钟,所以,乙队比甲队少用0.2分钟,本选项正确;

④根据0~2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误;

故选:A.本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象11、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.本题主要考查轴对称图形的性质,熟悉掌握性质是关键.12、C【分析】先根据二次根式有意义的条件求出x的取值范围,然后根据题意可知和异号,但是根据二次根式和绝对值的非负性可得或,解出x的值,找到在取值范围内的即可.【详解】有意义∴∵∴或∴或∵∴故选:C.本题主要考查绝对值和二次根式的非负性,二次根式有意义的条件,掌握二次根式有意义的条件,绝对值和二次根式的非负性是解题的关键.二、填空题(每题4分,共24分)13、等腰三角形【分析】将等式两边同时加上得,然后将等式两边因式分解进一步分析即可.【详解】∵,∴,即:,∵,,是的三边,∴,,都是正数,∴与都为正数,∵,∴,∴,∴△ABC为等腰三角形,故答案为:等腰三角形.本题主要考查了因式分解的应用,熟练掌握相关方法是解题关键.14、23【分析】根据线段的垂直平分线的性质和三角形的周长公式求解即可【详解】是的垂直平分线..的周长为:故答案:23.本题考查了垂直平分线的性质和三角形的周长公式,熟练掌握垂直平分线的性质和三角形的周长公式是解题关键.15、【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【详解】解:添加条件:,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故答案为:本题主要考查利用ASA判定三角形全等,找到另外一组相等角是解题的关键.16、【分析】根据点A在正比例函数y=6x的图像上,设点A为(x,6x),由AB平行x轴,AB=BC,可以得到点B的坐标为:(7x,6x),代入计算,即可求出k的值.【详解】解:∵点A在正比例函数y=6x的图像上,则设点A为(x,6x),∵由AB平行x轴,∴点B的纵坐标为6x,∵△ABC是等腰直角三角形,∠ABC=90°,∴AB=BC=6x,∴点B的横坐标为:7x,即点B为:(7x,6x),把点B代入y=kx,则,∴;故答案为:.本题考查了等腰直角三角形的性质,正比例函数的图像和性质,以及坐标与图形,解题的关键是利用点A的坐标,正确表示出点B的坐标.17、1【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【详解】如图,连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=1°,故答案为:1.本题考查矩形的性质,解题的关键是熟知矩形的对角线相等,再根据推导出角相等.18、小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.三、解答题(共78分)19、(1)证明见解析;(2)112.5°.【分析】根据同角的余角相等可得到结合条件,再加上可证得结论;

根据得到根据等腰三角形的性质得到由平角的定义得到【详解】证明:在△ABC和△DEC中,,(2)∵∠ACD=90°,AC=CD,∴∠1=∠D=45°,∵AE=AC,∴∠3=∠5=67.5°,∴∠DEC=180°-∠5=112.5°.20、4x-,【分析】原式中括号内先根据整式的乘法运算法则计算,合并同类项后再根据多项式除以单项式的法则计算,然后把x、y的值代入化简后的式子计算即可.【详解】解:原式=[8x2-6xy+y2+xy-y2]÷2x=[8x2-5xy]÷2x=4x-;当x=2,y=时,原式=4×2-=.本题考查了整式的混合运算以及代数式求值,属于常考题型,熟练掌握整式的混合运算法则是解题关键.21、,【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a的值代入计算即可.【详解】解:÷(a+2﹣)=÷(﹣)=÷=•=∵a≠±3且a≠2,∴a=0.则原式=.本题主要考查了分式的化简求值,先把分式化简,再把分式中未知数对应的值代入求出分式的值.关键是掌握在化简过程中的运算顺序和法则,注意运算的结果要化成最简分式或整式.22、;当时,原式的值为2.【分析】先根据分式混合运算法则把原式进行化简,然后选取合适的值代入计算即可.【详解】==,当时,原式==2.本题主要考查了分式的化简求值,代入求值时注意所代入的数不能使分式无意义是解题关键.23、(1)5;(2)①当点在线段上时,,的取值范围是;②当点在射线上时,,,的取值范围是;(3)存在,或.【解析】(1)只要证明△AOE≌△BCE即可解决问题;

(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2-4t,②当点Q在射线DC上时,DQ=4t-2时;

(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ;【详解】解:(1)∵是高,∴∵是高,∴∴,,∴在和中,∴≌∴;(2)∵,∴,,根据题意,,,①当点在线段上时,,∴,的取值范围是.②当点在射线上时,,∴,的取值范围是(3)存在.

①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.

∴CQ=OP,

∴5-4t═t,

解得t=1,

②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.

∴CQ=OP,

∴4t-5=t,

解得t=.

综上所述,t=1或s时,△BOP与△FCQ全等.本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论