萍乡市重点中学2024年八上数学期末质量跟踪监视模拟试题含解析_第1页
萍乡市重点中学2024年八上数学期末质量跟踪监视模拟试题含解析_第2页
萍乡市重点中学2024年八上数学期末质量跟踪监视模拟试题含解析_第3页
萍乡市重点中学2024年八上数学期末质量跟踪监视模拟试题含解析_第4页
萍乡市重点中学2024年八上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2 D.a:b:c=3:4:62.如图,在等边中,,过边上一点作于点,点为延长线上一点,且,连接交于点,则的长为().A.2 B. C.3 D.3.下列二次根式是最简二次根式的()A. B. C. D.4.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE5.若分式等于零,则的值是()A. B. C. D.6.如图,在中,,点是边上的一点,点是的中点,若的垂直平分线经过点,,则()A.8 B.6 C.4 D.27.下列各式中,分式的个数为(),,,,,,A.2个 B.3个 C.4个 D.5个8.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°9.下列图形中,不是轴对称图形的是()A. B. C. D.10.小明的数学平时成绩为94分,期中成绩为92分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小明的数学总评成绩为()A.93 B.94 C.94.2 D.9511.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.212.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,22二、填空题(每题4分,共24分)13.等腰三角形ABC中,∠A=40°,则∠B的度数是___________.14.如图,已知点.规定“把点先作关于轴对称,再向左平移1个单位”为一次变化.经过第一次变换后,点的坐标为_______;经过第二次变换后,点的坐标为_____;那么连续经过2019次变换后,点的坐标为_______.15.中,,,,将它的一个锐角翻折,使该锐角顶点落在其对边的中点处,折痕交另一直角边于点,交斜边于点,则的周长为__________.16.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.17.若,则__________(填“”“”或“”)18.一个n边形的内角和为1260°,则n=__________.三、解答题(共78分)19.(8分)如图:在平面直角坐标系中A(−3,2),B(−4,−3),C(−1,−1).(1)在图中作出△ABC关于y轴对称图形△A1B1C1;(2)写出A1、B1、C1的坐标分别是A1(___,___),B1(___,___),C1(___,___);(3)△ABC的面积是___.20.(8分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.21.(8分)计算或化简:(1)(2x-3y2)-2÷(x-2y)3;(2);(3).22.(10分)如图1,在等腰直角三角形中,,点在边上,连接,连接(1)求证:(2)点关于直线的对称点为,连接①补全图形并证明②利用备用图进行画图、试验、探究,找出当三点恰好共线时点的位置,请直接写出此时的度数,并画出相应的图形23.(10分)如图,已知和均是等边三角形,点在上,且.求的度数.24.(10分)如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小方格的顶点上.(1)在图甲中画一个以AB为边且面积为3的直角三角形(2)在图乙中画一个等腰三角形,使AC在三角形的内部(不包括边界)25.(12分)解方程或求值(1)解分式方程:(2)先化简,再求值,其中26.如图1,点为正方形的边上一点,,且,连接,过点作垂直于的延长线于点.(1)求的度数;(2)如图2,连接交于,交于,试证明:.

参考答案一、选择题(每题4分,共48分)1、D【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2−b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.

故选:D.本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、C【分析】过点D作DG∥BC交AC于点,根据等边三角形的性质和全等三角形的性质解答即可.【详解】解:过点D作DG∥BC交AC于点G,

∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,

∵△ABC是等边三角形,

∴AB=AC,∠B=∠ACB=∠A=60°,

∴∠A=∠ADG=∠AGD=60°,

∴△ADG是等边三角形,

∴AG=AD,DH⊥AC,∴AH=HG=AG,

∵AD=CE,

∴DG=CE,

在△DFG与△EFC中

∴△DFG≌△EFC(AAS),∴GF=FC=GC

∴HF=HG+GF=AG+GC=AC=3,故选C.此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、D【解析】根据最简二次根式的概念判断即可.【详解】A.不是最简二次根式;B.不是最简二次根式;C.不是最简二次根式;D.是最简二次根式;故选:D.本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.4、B【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【详解】当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS)考点:全等三角形的判定与性质.5、C【分析】根据分式的值为零的条件可以求出的值,分式的值是1的条件是:分子为1,分母不为1.【详解】∵且,解得:,故选:C.本题考查了分式的值为零的条件:分式的分子为1,分母不为1,则分式的值为1.6、C【分析】根据线段垂直平分线的性质可得,再根据直角三角形斜边中线定理即可求得答案.【详解】解:∵的垂直平分线经过点,∴,∵,点是的中点,∴,故选:C.本题考查了线段垂直平分线的性质,直角三角形斜边中线定理.7、B【分析】根据如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】、、分母中含字母,因此是分式;一共有3个;故选B.本题考查分式的定义,解题关键是熟练掌握分式的定义.8、D【解析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.9、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.故选:C.此题考查轴对称图形的概念,解题关键在于寻找对称轴,图形两部分折叠后可重合.10、C【分析】利用加权平均数的计算方法计算加权平均数即可得出总评成绩.【详解】解:1×+92×+96×=1.2分,故选:C.本题考查了加权平均数的计算,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权).数据的权能反映数据的相对“重要程度”,对于同样的一组数据,若权重不同,则加权平均数很可能是不同的.11、B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【详解】解:如图,

∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16

∴AB2=AC2=1,

∴正方形的面积=AB2=1.

故选:B.本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、A【分析】根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.

故选A.本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.二、填空题(每题4分,共24分)13、40°或70°或100°【分析】等腰三角形△ABC可能有三种情况,①当∠A为顶角时,②当∠B为顶角,②当∠C为顶角时,根据各种情况求对应度数即可.【详解】根据题意,当∠A为顶角时,∠B=∠C=70°,当∠B为顶角时,∠A=∠C=40°,∠B=100°,当∠C为顶角时,∠A=∠B=40°,故∠B的度数可能是40°或70°或100°,故答案为:40°或70°或100°.本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握.14、【分析】根据轴对称判断出点A关于x轴对称后的位置,此时横坐标不变,纵坐标互为相反数,然后再向左平移1个单位长度便可得到第一次变换后的点A的坐标;按照同样的方式可以找到第二次变换后的点A的坐标;然后再通过比较横纵坐标的数值,可以发现点A在每一次变换后的规律,即可求出经过2019次变换后的点A的坐标.【详解】点A原来的位置(0,1)第一次变换:,此时A坐标为;第二次变换:,此时A坐标为第三次变换:,此时A坐标为……第n次变换:点A坐标为所以第2019次变换后的点A的坐标为.故答案为:;;本题考查的知识点是轴对称及平移的相关知识,平面直角坐标系中四个象限的点的横、纵坐标的符号是解题中的易错点,必须特别注意.15、20cm或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A和∠B两种情况求解即可.【详解】当∠B翻折时,B点与D点重合,DE与EC的和就是BC的长,即DE+EC=16cm,CD=AC=6cm,故△CDE的周长为16+6=22cm;当∠A翻折时,A点与D点重合.同理可得DE+EC=AC=12cm,CD=BC=8cm,故△CDE的周长为12+8=20cm.故答案为20cm或22cm.本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.16、()2018【解析】首先根据△ABC是腰长为1的等腰直角三形,求出△ABC的斜边长是,然后根据以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,求出第2个等腰直角三角形的斜边长是多少;再根据以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,求出第3个等腰直角三角形的斜边长是多少,推出第2017个等腰直角三角形的斜边长是多少即可.【详解】解:∵△ABC是腰长为1的等腰直角三形,

∴△ABC的斜边长是,第2个等腰直角三角形的斜边长是:×=()2,第3个等腰直角三角形的斜边长是:()2×=()3,…,

∴第2012个等腰直角三角形的斜边长是()2018.故答案为()2018.本题考查勾股定理和等腰三角形的特征和应用,解题关键是要熟练掌握勾股定理,注意观察总结出规律.17、【分析】根据不等式的性质先比较出的大小,然后利用不等式的性质即可得出答案.【详解】∵故答案为:.本题主要考查不等式的性质,掌握不等式的性质,尤其是不等式的两边都乘以一个负数时,不等号的方向改变是解题的关键.18、1【分析】根据多边形内角和公式可直接进行求解.【详解】解:由一个n边形的内角和为1260°,则有:,解得:,故答案为1.本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)A1(3,2),B1(4,-3),C1(1,-1);(3)6.1.【分析】(1)分别作出点A、B、C关于y轴对称的点A1,B1,C1,然后顺次连接即可;(2)根据坐标系,写出对应点的坐标.(3)利用△ABC所在梯形面积减去周围三角形面积,进而得出答案.【详解】(1)如图所示,△A1B1C1即为所求.(2)A1(3,2),B1(4,-3),C1(1,-1);(3)如图所示,S△ABC=S梯形ABDE-S△AEC-S△DBC=(2+3)×(3+2)2×33×2=12.1﹣3﹣3=6.1.故答案为6.1.本题考查了轴对称变换、三角形的面积等知识,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得,,故ABC的面积为1.本题主要考察了对称轴的画法、求两点到第三点距离之和最短的情况、用割补法求三角形面积,解题的关键在于结合图形中对应点找出对称轴,并以此对称轴求得距离最短的情况.21、(1);(2);(3)【分析】(1)先利用负整数指数幂和整数指数幂的运算法则运算,再利用单项式乘除单项式法则计算即可得到结果;(2)通分并利用同分母分式的减法法则计算,再利用平方差公式展开合并同类项即可;(3)将括号中两项通分并利用同分母分式的减法法则计算,化除法为乘法运算,约分得到最简结果即可.【详解】(1)(2x-3y2)-2÷(x-2y)3;(2);(3).本题主要考查负整数指数幂的运算和分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22、(1)证明见解析;(2)①见解析;②画图见解析,.【分析】(1)先根据同角的余角相等推出∠BAD=∠CAE,再根据SAS证得△BAD≌△CAE,进而可得结论;(2)①根据题意作图即可补全图形;利用轴对称的性质可得ME=AE,CM=CA,然后根据SSS可推出△CME≌△CAE,再利用全等三角形的性质和(1)题的∠BAD=∠CAE即可证得结论;②当三点恰好共线时,设AC、DM交于点H,如图3,由前面两题的结论和等腰直角三角形的性质可求得∠DCM=135°,然后在△AEH和△DCH中利用三角形的内角和可得∠HAE=∠HDC,进而可得,接着在△CDM中利用三角形的内角和定理求出∠CMD的度数,再利用①的结论即得答案.【详解】解:(1)证明:∵AE⊥AD,∴∠DAE=90°,∴∠CAE+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAE,又∵BA=CA,DA=EA,∴△BAD≌△CAE(SAS),∴;(2)①补全图形如图2所示,∵点关于直线的对称点为,∴ME=AE,CM=CA,∵CE=CE,∴△CME≌△CAE(SSS),∴,∵∠BAD=∠CAE,∴;②当三点恰好共线时,设AC、DM交于点H,如图3,由(1)题知:,∵△CME≌△CAE,∴,∴∠DCM=135°,在△AEH和△DCH中,∵∠AEH=∠ACD=45°,∠AHE=∠DHC,∴∠HAE=∠HDC,∵,∴,∴,∵,∴.本题考查了依题意作图、等腰直角三角形的性质、轴对称的性质、全等三角形的判定和性质以及三角形的内角和定理等知识,综合性较强,熟练掌握上述知识是解题关键.23、【分析】根据等边三角形的性质可证明△ABD≌△ACE,根据全等三角形的性质得到BD=CE,∠ACE=∠B=60°,进而得到DC=CE,∠DCE=120°,根据等腰三角形的性质以及三角形内角和定理即可得出结论.【详解】∵与均是等边三角形,∴,,,∴,∴,∴,,∴,,∴.本题考查了等边三角形的性质以及等腰三角形的判定.证明三角形△ABD≌△ACE是解答本题的关键.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论