云南省昆明市云南师范大实验中学2024年九年级数学第一学期期末学业质量监测试题含解析_第1页
云南省昆明市云南师范大实验中学2024年九年级数学第一学期期末学业质量监测试题含解析_第2页
云南省昆明市云南师范大实验中学2024年九年级数学第一学期期末学业质量监测试题含解析_第3页
云南省昆明市云南师范大实验中学2024年九年级数学第一学期期末学业质量监测试题含解析_第4页
云南省昆明市云南师范大实验中学2024年九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=02.已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.43.下列方程中,属于一元二次方程的是()A. B. C. D.4.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2 B. C.1 D.5.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.6.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为()A. B. C. D.7.将抛物线y=x2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为().A. B. C. D.8.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米 B.800tanα米 C.米 D.米9.已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3Ω B.R≤3Ω C.R≥12Ω D.R≥24Ω10.若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为()A. B.C. D.11.下列调查方式合适的是()A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式B.了解炮弹的杀伤力,采用全面调查的方式C.对中央台“新闻联播”收视率的调查,采用全面调查的方式D.对石家庄市食品合格情况的调查,采用抽样调查的方式12.观察下列图形,是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.建国70周年阅兵式中,三军女兵方队共352人,其中领队2人,方队中,每排的人数比排数多11,则女兵方队共有____________排,每排有__________人.14.如图,⊙O与抛物线交于两点,且,则⊙O的半径等于_______.15.已知扇形的弧长为4π,圆心角为120°,则它的半径为_____.16.代数式中的取值范围是__________.17.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.18.写出一个你认为的必然事件_________.三、解答题(共78分)19.(8分)如图1,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图2,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.20.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?21.(8分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.22.(10分)计算:(1);(2).23.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.24.(10分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.25.(12分)26.某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?

参考答案一、选择题(每题4分,共48分)1、C【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【详解】A.△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B.△=32﹣4×3<0,方程没有实数解,所以B选项错误;C.方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D.方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.2、C【分析】根据图象可直接判断a、c的符号,再结合对称轴的位置可判断b的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:,,由于对称轴,∴,∴,故①正确;②∵抛物线过,∴时,,故②正确;③顶点坐标为:.由图象可知:,∵,∴,即,故③错误;④由图象可知:,,∴,∵,∴,∴,故④正确;故选:C.本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、灵活运用数形结合的思想方法是解题的关键.3、D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解.【详解】解:A.不是一元二次方程;B.不是一元二次方程;C.整理后可知不是一元二次方程;D.整理后是一元二次方程;故选:D.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).4、B【分析】在直角三角形ACD中,根据正切的意义可求解.【详解】如图:在RtACD中,tanC.故选B.本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.5、D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:=,解得:x=4,则随机摸出一个球是蓝球的概率是=;故选:D.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6、D【分析】根据菱形与的圆的对称性到△AOE为等边三角形,故可利用扇形AOE的面积减去△AOE的面积得到需要割补的面积,再利用圆的面积减去4倍的需要割去的面积即可求解.【详解】∵菱形中,已知,,连接AO,BO,∴∠ABO=30°,∠AOB=90°,∴∠BAO=60°,又AO=EO,∴△AOE为等边三角形,故AE=EO=AB=2∴r=2∴S扇形AOE==S△AOE===∴图中阴影部分的面积=×22-4(-)=故选D.本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.7、C【分析】由二次函数平移的规律即可求得答案.【详解】解:将抛物线y=x2先向上平移1个单位,则函数解析式变为y=x2+1,将y=x2+1向左平移2个单位,则函数解析式变为y=(x+2)2+1,故选:C.本题主要考查二次函数的图象平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.9、A【分析】直接利用图象上点的坐标得出函数解析式,进而利用限制电流不能超过12A,得出电器的可变电阻R应控制范围.【详解】解:设I=,把(9,4)代入得:U=36,故I=,∵限制电流不能超过12A,∴用电器的可变电阻R≥3,故选:A.本题考查了反比例的实际应用,数形结合,利用图像解不等式是解题的关键10、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:.故选:C.本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.11、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:对空间实验室“天空二号”零部件的检查,采用全面调查的方式,A错误;了解炮弹的杀伤力,采用抽样调查的方式,B错误;对中央台“新闻联播”收视率的调查,采用抽样调查的方式,C错误;对石家庄市食品合格情况的调查,采用抽样调查的方式,D正确,故选:D.本题考查全面调查与抽样调查,理解全面调查与抽样调查的特点是本题的解题关键.12、C【分析】根据中心对称图形的概念判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意.故选:C.本题考查了中心对称图形的识别,熟练掌握概念是解题的关键.二、填空题(每题4分,共24分)13、14;1【分析】先设三军女兵方队共有排,则每排有()人,根据三军女兵方队共352人可列方程求解即可.【详解】设三军女兵方队共有排,则每排有()人,根据题意得:

整理,得.

解得:(不合题意,舍去),

则(人).

故答案为:14,1.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14、【分析】连接OA,AB与y轴交于点C,根据AB=2,可得出点A,B的横坐标分别为−1,1.再代入抛物线即可得出点A,B的坐标,再根据勾股定理得出⊙O的半径.【详解】连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为−1,1.∵⊙O与抛物线交于A,B两点,∴点A,B的坐标分别为(−1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.故答案为:.本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A的纵坐标是解题的关键.15、6【解析】根据弧长公式可得.【详解】解:∵l=nπr180,∵l=4π,n=120∴4π=120πr180,

解得:r=6,

本题考查弧长的计算公式,牢记弧长公式是解决本题的关键.16、;【分析】根据二次根式被开方数大于等于0,列出不等式即可求出取值范围.【详解】∵二次根式有意义的条件是被开方数大于等于0∴解得故答案为:.本题考查二次根式有意义的条件,熟练掌握被开方数大于等于0是解题的关键.17、【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【详解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm.∴点A′是斜边AB的中点,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋转所构成的扇形的弧长为:(cm).故答案为:.18、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).此题考查事件的可能性:必然事件的概念.三、解答题(共78分)19、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系数法求解即可;(2)作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,求出直线AD的解析式,设F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面积,然后利用二次函数的性质求解即可;(3)分AP为对角线和AM为对角线两种情况求解即可.【详解】解:(1)∵抛物线x轴相交于点A(-1,0),B(3,0),∴设该抛物线对应的二次函数关系式为y=a(x+1)(x-3),∵点D(2,3)在抛物线上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;(2)如图1,作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,设直线AD为y=kx+b,∵A(-1,0),D(2,3),∴,∴,∴直线AD为y=x+1.设点F的横坐标为t,则F(t,-t2+2t+3),M(t,t+1),∵S△FAD=S△AMF+S△DMF=MF(Dx-Ax)=×3(-t2+2t+3-t-1)=×3(-t2+t+2)=-(t-)2+,∴即当t=时,S△FAD最大,∵当x=时,y=-()2+2×+3=,∴F(,);(3)∵y=-x2+2x+3=-(x-1)2+4,∴顶点M(1,4).当AP为对角线时,如图2,设抛物线对称轴交x轴于点R,作PS⊥MR,∵∠PMS+∠AMR=90°,∠MAR+∠AMR=90°,∴∠PMA=∠MAR,∵∠PSM=∠ARM=90°,∴△PMS∽△MAR,∴,∴,∴MS=,∴OP=RS=4+=,∴n=;延长QA交y轴于T,∵PM∥AQ,∴∠MPO=∠OAM,∵∠MPS+∠MPO=90°,∠OAT+∠OAM=90°,∴∠MPS=∠OAT.又∵PS=OA=1,∠PSM=∠AOT=90°,∴△PSM≌△AOT,∴AT=PM=AQ,OT=MS=.∵AM⊥AQ,∴T和Q关于AM对称,∴T(0,-);当AQ为对角线时,如图3,过A作SR⊥x轴,作PS⊥SR于S,作MR⊥SR于R,∵∠RAM+∠SAP=90°,∠SAP+∠SPA=90°,∴∠RAM=∠SPA,∵∠PSA=∠ARM=90°,∴△PSA∽△ARM,∴,∴,∴AS=,∴OP=,∴n=-;延长QM交y轴于T,∵QM∥AP,∴∠APT=∠MTP,∵∠OAP+∠APT=90°,∠GMT+∠MTP=90°,∴∠OAP=∠GMT.又∵GM=OA=1,∠AOP=∠MGT=90°,∴△OAP≌△GMT,∴MT=AP=MQ,GT=OP=.∵AM⊥TQ,∴T和Q关于AM对称,∵OT=4+=,∴T(0,).综上可知,n=,T(0,-)或n=-,T(0,).本题考查了待定系数法求二次函数和一次函数解析式,割补法求图形的面积,利用二次函数求最值,相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质,以及分类讨论的数学思想,用到的知识点较多,难度较大,树中考压轴题.20、(1)y=﹣2x+200(40≤x≤60);(2)售价为60元时获得最大利润,最大利润是1600元.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.【详解】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200(40≤x≤60);(2)w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵40≤x≤60,∴当x=60时,w取得最大值为1600,答:w与x之间的函数表达式为W=﹣2x2+280x﹣8000,售价为60元时获得最大利润,最大利润是1600元.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.21、(1);(2)【分析】(1)由一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,直接利用概率公式求解即可求得答案.(2)首先根据题意画出树状图或列表,然后由图表求得所有等可能的结果与小明和小芳两人均抽到负数的情况,再利用概率公式求解即可求得答案.【详解】(1)∵一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,∴小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,∴P(小芳抽到负数)=(2)画树状图如下:∵共有12种机会均等的结果,其中两人均抽到负数的有2种,∴P(两人均抽到负数)=22、(1);(2)2【分析】(1)利用特殊角的三角函数值分别代入计算即可;(2)利用特殊角的三角函数值以及零次幂的值分别代入计算即可.【详解】解:(1)原式;(2)原式=.此题主要考查了特殊角的三角函数值,正确记忆三角函数值是解题关键.23、(1)相切,理由见解析;(2)DE=.【分析】(1)连接A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论