




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法解方程,配方后得到的方程是()A. B. C. D.2.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.11763.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)4.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.23 B.32 C.65.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.20176.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为()A.40° B.30° C.20° D.15°7.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣38.若关于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>09.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=150010.如图,正方形的边长为,点在边上.四边形也为正方形,设的面积为,则()A.S=2 B.S=2.4C.S=4 D.S与BE长度有关二、填空题(每小题3分,共24分)11.抛物线y=x2﹣2x+1与x轴交点的交点坐标为______.12.用配方法解方程时,原方程可变形为_________.13.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.14.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.15.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.16.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.17.如图,在平面直角坐标系xOy中,点A在函数y=(x>0)的图象上,AC⊥x轴于点C,连接OA,则△OAC面积为_____.18.若m是方程2x2﹣3x=1的一个根,则6m2﹣9m的值为_____.三、解答题(共66分)19.(10分)已知二次函数.(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.20.(6分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.21.(6分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.22.(8分)用配方法解方程:x2﹣6x=1.23.(8分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式24.(8分)某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?25.(10分)已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.26.(10分)已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.(1)求A、B、C三点的坐标;(2)若△PAB的面积为4,求点P的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x2−4x=1,
配方得:x2−4x+4=1,
即(x−2)2=1.
故选A.本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.2、B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02,
出售1200件衬衣,其中次品大约有1200×0.02=24(件),
故选:B.此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.3、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.4、D【分析】首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.【详解】在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA.∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC.∴△ABD∽△CAD.∴DB:AD=AD:DC.∵BD:CD=3:2,∴设BD=3x,CD=2x.∴AD=∴tanB=故选D.本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.5、C【详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.6、C【分析】先根据垂径定理由OA⊥BC得到,然后根据圆周角定理计算即可.【详解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故选:C.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.7、D【详解】因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.8、B【解析】根据一元二次方程定义,首先要求的二次项系数不为零,再根据已知条件,方程有两个不相等的实数根,令根的判别式大于零即可.【详解】解:由题意得,解得,;且,即,解得.综上所述,且.本题主要考查一元二次方程的定义和根的判别式,理解掌握定义,熟练运用根的判别式是解答关键.9、A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选A.10、A【分析】连接FB,根据已知可得到⇒△ABC与△AFC是同底等高的三角形,由已知可求得△ABC的面积为大正方形面积的一半,从而不难求得S的值.【详解】解:连接FB,∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC,∴△ABC与△AFC是同底等高的三角形,∵2S△ABC=S正ABCD,S正ABCD=2×2=4,∴S=2故选A.本题利用了正方形的性质,内错角相等,两直线平行的判定方法,及同底等高的三角形的面积相等的性质求解.二、填空题(每小题3分,共24分)11、(1,0)【分析】通过解方程x2-2x+1=0得抛物线与x轴交点的交点坐标.【详解】解:当y=0时,x2﹣2x+1=0,解得x1=x2=1,所以抛物线与x轴交点的交点坐标为(1,0).故答案为:(1,0).本题考查抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.12、【分析】将常数项移到方程的右边,将二次项系数化成1,再两边都加上一次项系数一半的平方配成完全平方式后即可得.【详解】∵,
方程整理得:,
配方得:,即.故答案为:.本题主要考查了解一元二次方程-配方法,熟练掌握完全平方公式的结构特点是解本题的关键.13、1.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为1.本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.14、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.15、9.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第1个图形中小圆的个数为21;则知第n个图形中小圆的个数为n(n+1)+1.依此列出方程即可求得答案.【详解】解:设第n个图形有91个小圆,依题意有n2+n+1=91即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有91个小圆.故答案为:9本题考查(1)、一元二次方程的应用;(2)、规律型:图形的变化类.16、【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),
∴AB==5,
由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,
∵2019÷3=673,
∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,
∵673×12=8076,
∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.17、1【分析】根据反比例函数比例系数k的几何意义可得S△OAC=×2=1,再相加即可.【详解】解:∵函数y=(x>0)的图象经过点A,AC⊥x轴于点C,∴S△OAC=×2=1,故答案为1.本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.18、1【分析】把m代入方程2x2﹣1x=1,得到2m2-1m=1,再把6m2-9m变形为1(2m2-1m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣1x=1的一个根,∴2m2﹣1m=1,∴6m2﹣9m=1(2m2﹣1m)=1×1=1.故答案为1.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题(共66分)19、(1)证明见解析;(2).【分析】(1)根据二次函数图象与x轴交点关系求解;(2)根据对称轴公式求解.【详解】(1)证明:令y=0,则,∵△===∵≥0,∴>0∴无论取何实数,此二次函数的图像与轴都有两个交点.(2).∵对称轴为x=,∴k=2∴解析式为考核知识点:二次函数的性质.20、(1);(2);(3)是,【分析】(1)若,则,代入数值即可求得CD,从而求得的半径.(2)当与相切时,则CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的长,过P点作PE⊥AO于E点,再利用△CPE∽△CAD,得出比例式求得P点的坐标,即可求得△POB的面积.(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则,综上所述,△PAB的面积是定值,为.【详解】(1)根据题意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半径为(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,当与相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD为圆P的直径∴CP=过P点作PE⊥AO于E点,则∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P点的纵坐标为∴△POB的面积=(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则.综上所述,△PAB的面积是定值,为.本题考查的是圆及相似三角形的综合应用,熟练的掌握直线与圆的位置关系,相似三角形的判定是关键.21、(1)见解析;(2)见解析.【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.22、x1=3﹣,x2=3+.【分析】根据配方法,可得方程的解.【详解】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x1=3﹣,x2=3+.此题主要考查一元二次方程的求解,解题的关键是熟知配方法解方程.23、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.【分析】(1)将二次函数的一般式转化为顶点式,即可求出结论;(2)根据抛物线的开口方向和对称轴左右两侧的增减性即可得出结论;(3)根据抛物线的平移规律:括号内左加右减,括号外上加下减,即可得出结论.【详解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴当x=3时,y有最小值,最小值是-5;(2)∵2>0,对称轴为x=3∴抛物线的开口向上∴当x<3时,y随x的增大而减小;(3)∵将该抛物线向右平移2个单位,再向上平移2个单位,∴平移后的解析式为:y=2(x-3-2)2-5+2=2(x-5)2-3即新抛物线的表达式为y=2x2-20x+47此题考查的是二次函数的图像及性质,掌握用二次函数的顶点式求最值、二次函数的增减性和二次函数的平移规律是解决此题的关键.24、(1)这两年产值的平均增长率为;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为,则2018年万元,2019年万元.则,解得,或(不合题意舍去).答:这两年产值的平均增长率为.(2)(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.本题考查的是一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基础训练册数学试卷
- 二零二五年度电子商务平台虚拟商品交易合同汇编
- 中药零售信息系统优化-洞察及研究
- 2025版新能源汽车充电站建设合同范本
- 荆荆宜随数学试卷
- 2025版货车司机劳动合同解除条件范本
- 2025版GVANGJSIHCWNGBAU智能设备供应链管理合同
- 二零二五年度离婚协议中子女监护权争议解决补充协议范本
- 二零二五年度医院后勤食堂服务外包合同
- 2025版还建小区房屋买卖及配套设施合同
- 讲解员技能测试题库及答案
- 企业工伤预防培训课件
- 新疆伊犁州高校毕业生“三支一扶”计划招募笔试真题2024
- 战略项目管理试题及答案
- 网络安全部门四讲四有问题查摆清单及整改措施
- 食品安全总监、食品安全员考核考试试题库(含答案)
- 知识产权大数据分析-洞察阐释
- 中央空调施工组织方案
- 《电力建设火力发电厂工程智慧工地技术标准》
- 电梯故障救援培训
- 职称评审申报培训
评论
0/150
提交评论