




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm2.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是()A. B. C. D.4.四位同学在研究函数(是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙 C.丙 D.丁5.若抛物线经过点,则的值在().A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间6.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分 C.AC=BD D.AB∥CD7.如图,在中,,,,以点为圆心,长为半径画弧,交边于点,则阴影区域的面积为()A. B. C. D.8.若,则等于()A. B. C. D.9.二次函数图像的顶点坐标是()A. B. C. D.10.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.二、填空题(每小题3分,共24分)11.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为_________.12.反比例函数的图象在一、三象限,则应满足_________________.13.如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为▲(结果保留).14.如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_____________15.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.16.抛物线y=x2﹣4x﹣5与x轴的两交点间的距离为___________.17.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.18.已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为_______.三、解答题(共66分)19.(10分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.20.(6分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:本次调查随机抽取了____名学生:表中;补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人21.(6分)“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆_____km.22.(8分)如图,在平面直角坐标系中,直线AB与y轴交于点,与反比例函数在第二象限内的图象相交于点.(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求的面积;(3)设直线CD的解析式为,根据图象直接写出不等式的解集.23.(8分)在一个不透明的口袋里,装有若干个完全相同的A、B、C三种球,其中A球x个,B球x个,C球(x+1)个.若从中任意摸出一个球是A球的概率为0.1.(1)这个袋中A、B、C三种球各多少个?(2)若小明从口袋中随机模出1个球后不放回,再随机摸出1个.请你用画树状图的方法求小明摸到1个A球和1个C球的概率.24.(8分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)请画出关于轴对称的;(2)以点为位似中心,相似比为1:2,在轴右侧,画出放大后的;25.(10分)如图1所示,六个小朋友围成一圈(面向圈内)做传球游戏,规定:球不得传给自己,也不得传给左手边的人.若游戏中传球和接球都没有失误.若由开始一次传球,则和接到球的概率分别是、;若增加限制条件:“也不得传给右手边的人”.现在球已传到手上,在下面的树状图2中画出两次传球的全部可能情况,并求出球又传到手上的概率.26.(10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)
参考答案一、选择题(每小题3分,共30分)1、D【解析】∴选D2、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.3、B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵,
∴该抛物线的顶点坐标是(1,3),
∴在旋转之后的抛物线解析式为:.
故选:B.本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.4、B【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A.假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得解得:∴二次函数的解析式为:∴当x=时,y的最小值为,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B.假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C.假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得解得:∴当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意;D.假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意.故选B.此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b、c的值是解决此题的关键.5、D【分析】将点A代入抛物线表达式中,得到,根据进行判断.【详解】∵抛物线经过点,∴,∵,∴的值在3和4之间,故选D.本题考查抛物线的表达式,无理数的估计,熟知是解题的关键.6、B【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B7、C【分析】根据直角三角形的性质得到AC=2,BC=2,∠B=60,根据扇形和三角形的面积公式即可得到结论.【详解】∵在Rt△ABC中,∠ACB=90,∠A=30,AB=4,∴BC=AB=2,AC=,∠B=60,∴阴影部分的面积=S△ACB−S扇形BCD=×2×2-=,故选:C.本题考查了扇形面积的计算,含30角的直角三角形的性质,正确的识别图形是解题的关键8、B【分析】首先根据已知等式得出,然后代入所求式子,即可得解.【详解】∵∴∴故答案为B.此题主要考查利用已知代数式化为含有同一未知数的式子,即可解题.9、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵,∴二次函数的顶点坐标为.
故选:D.本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.10、C【分析】根据题意得点P点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【详解】∵P点坐标为(3,-2),∴P点的原点对称点P′的坐标为(-3,2).故选C.本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.二、填空题(每小题3分,共24分)11、【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,依题意列方程:1+x+x(1+x)=1.【详解】整理得,.
故答案为:.本题考查了由实际问题抽象出一元二次方程.关键是得到两轮传染数量关系,从而可列方程求解.12、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.13、.【解析】如图,先根据直角三角形的性质求出∠ABC+∠BAC的值,再根据扇形的面积公式进行解答即可:∵△ABC是直角三角形,∴∠ABC+∠BAC=90°.∵两个阴影部分扇形的半径均为1,∴S阴影.14、【分析】将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B的坐标,点A、B之间部分的自变量x的取值范围即为不等式的解集.【详解】解:抛物线经过点抛物线解析式为点坐标对称轴为x=-2,B、C关于对称轴对称,点坐标由图象可知,满足的的取值范围为故答案为:.本题考查了利用二次函数的性质来确定系数m和图象上点B的坐标,而根据图象可知满足不等式的的取值范围是在B、A两点之间.15、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.16、1【分析】根据抛物线y=x2-4x-5,可以求得抛物线y=x2-4x-5与x轴的交点坐标,即可求得抛物线y=x2-4x-5与x轴的两交点间的距离.【详解】解:∵y=x2-4x-5=(x-5)(x+1),∴当y=0时,x1=5,x2=-1,∴抛物线y=x2-4x-5与x轴的两交点的坐标为(5,0),(-1,0),∴抛物线y=x2-4x-5与x轴的两交点间的距离为:5-(-1)=5+1=1,故答案为:1.本题主要考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答。17、3【分析】由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.18、16或1【分析】结合垂径定理和勾股定理,在Rt△OCE中,求得OE的长,则AE=OA+OE或AE=OA-OE,据此即可求解.【详解】解:如图,连接OC,∵⊙O的直径AB=20∴OC=OA=OB=10∵弦CD⊥AB于点E∴CE=CD=8,在Rt△OCE中,OE=则AE=OA+OE=10+6=16,如图:同理,此时AE=OA-OE=10-6=1,故AE的长是16或1.本题考查勾股定理和垂径定理的应用,根据题意做出图形是本题的解题关键,注意分类讨论.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;
(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=OC=4,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:
∵AB是⊙O的直径,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
∵CA=CD,BC=BD,
∴∠A=∠D=∠BCD,
又∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCD,
∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,
∴CD⊥OC,
∵OC是⊙O的半径,
∴CD与⊙O相切;
(2)解:∵AB=8,
∴OC=OB=4,
由(1)得:∠A=∠D=∠BCD,
∴∠OBC=∠BCD+∠D=2∠D,
∵∠BOC=2∠A,
∴∠BOC=∠OBC,
∴OC=BC,
∵OB=OC,
∴OB=OC=BC,
∴∠BOC=60°,
∵∠OCD=90°,
∴∠D=90°-60°=30°,
∴CD=OC=4,
∴图中阴影部分的面积=△OCD的面积-扇形OBC的面积=×4×4-=8-π.本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.20、(1)50,20,0.12;(2)详见解析;(3)1.【分析】(1)根据总数×频率=频数,即可得到答案;(2)根据统计表的数据,即可画出条形统计图;(3)根据全校总人数×达到“优秀"和“良好”等级的学生的百分比,即可得到答案.【详解】本次调查随机抽取了名学生,.故答案为:;补全条形统计图如图所示:(人),答:该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有1多少人.本题主要考查频数统计表和条形统计图,掌握统计表和条形统计图的特征,是解题的关键.21、300【分析】先设乙列车的速度为,甲列车以的速度向地行驶,到达地停留20分钟后,以的速度返回重庆,依据题意列方程,求得未知数的值,进而得到重庆到地的路程,以及乙列车到达地的时间,最后得出当乙列车到达地时,甲列车距离重庆的路程.【详解】解:设乙列车的速度为,甲列车以的速度向地行驶,到达地停留20分钟后,以的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达地,可得,①根据甲列车到达地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得,②根据甲列车往返两地的路程相等,可得,③由①②③,可得,,,∴重庆到地的路程为(),∴乙列车到达地的时间为(),∴当乙列车到达地时,甲列车距离重庆的路程为(),故答案为:300.本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,解决问题的关键是依据等量关系,列方程求解.22、(1));(2)的面积为1;(3)或.【分析】(1)将点A(-1,a)代入反比例函数求出a的值,确定出A的坐标,再根据待定系数法确定出一次函数的解析式;(2)根据直线的平移规律得出直线CD的解析式为y=-x-2,从而求得D的坐标,联立方程求得交点C、E的坐标,根据三角形面积公式求得△CDB的面积,然后由同底等高的两三角形面积相等可得△ACD与△CDB面积相等;(3)根据图象即可求得.【详解】(1))∵点在反比例函数的图象上,∴,∴,∵点,∴设直线AB的解析式为,∵直线AB过点,∴,解得,∴直线AB的解析式为;(2)∵将直线AB向下平移9个单位后得到直线CD的解析式为,∴,∴,联立,解得或,∴,,连接AC,则的面积,由平行线间的距离处处相等可得与面积相等,∴的面积为1.(3)∵,,∴不等式的解集是:或.此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.23、(1)这个袋中A、B、C三种球分别为1个、1个、2个;(2)【分析】(1)由题意列方程,解方程即可;(2)首先画树状图,由概率公式即可得出答案.【详解】解:由题意得:[x+x+(x+1)]=x,解得:x=1,∴x+1=2,答:这个袋中A、B、C三种球分别为1个、1个、2个;(2)由题意,画树状图如图所示共有12个等可能的结果,摸到1个A球和1个C球的结果有4个,∴摸到1个A球和1个C球的概率为.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冠名医院管理办法
- 出租场所管理办法
- 分保等级管理办法
- 分层维护管理办法
- 分行制管理办法
- 列账收入管理办法
- 创文庭院管理办法
- 创新经费管理办法
- 制定三案管理办法
- 制度文件管理办法
- 2025年丁烷气瓶市场前景分析
- 2025年北京市高考英语试卷(含答案)
- 计算机视觉与深度学习在交通工程中的应用
- 软件开发项目上线报告模板
- 医院重点病人管理制度
- 2025狱警公务员面试题及答案
- 非典型溶血尿毒综合征多学科共识解读(2025版)
- 中华护理学会团体标准|2024 针刺伤预防与处理
- STM32智能扫地机器人的设计与实现
- 国家电网有限公司输变电工程通 用设计(330~750kV输电线路绝缘子金具串通 用设计分册)2024版
- 湖北省武汉市经济开发区2025届四下数学期末考试试题含解析
评论
0/150
提交评论