2024年云南省腾冲市第八中学数学九年级第一学期期末学业质量监测试题含解析_第1页
2024年云南省腾冲市第八中学数学九年级第一学期期末学业质量监测试题含解析_第2页
2024年云南省腾冲市第八中学数学九年级第一学期期末学业质量监测试题含解析_第3页
2024年云南省腾冲市第八中学数学九年级第一学期期末学业质量监测试题含解析_第4页
2024年云南省腾冲市第八中学数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知,点是线段上的黄金分割点,且,则的长为()A. B. C. D.2.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.03.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为()A.8 B.4 C.1 D.54.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣25.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.6.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大7.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.8.方程x(x﹣5)=x的解是()A.x=0

B.x=0或x=5

C.x=6 D.x=0或x=69.的值为()A.2 B. C. D.10.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为()A.40° B.30° C.20° D.15°二、填空题(每小题3分,共24分)11.计算:﹣(﹣π)0+()﹣1=_____.12.如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为_____.13.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.14.二次函数y=3(x+2)的顶点坐标______.15.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中x与y的部分对应值如下表x-1013y-1353那么当x=4时,y的值为___________.16.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.17.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.18.在比例尺为1:3000000的地图上,测得AB两地间的图上距离为5厘米,则AB两地间的实际距离是______千米.三、解答题(共66分)19.(10分)假期期间,甲、乙两位同学到某影城看电影,影城有《我和我的祖国》(记为)、《中国机长》(记为)、《攀登者》(记为)三部电影,甲、乙两位同学分别从中任选一部观看,每部被选中的可能性相同.用树状图或列表法求甲、乙两位同学选择同一部电影的概率.20.(6分)如图,AB与⊙O相切于点B,AO及AO的延长线分别交⊙O于D、C两点,若∠A=40°,求∠C的度数.21.(6分)一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别,当时,从袋中随机摸出个球,摸到红球和摸到白球的可能性(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于,则的值是;在的情况下,如果一次摸出两个球,请用树状图或列表法求摸出的两个球颜色不同的概率.22.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为.(1)画出,使与关于点成中心对称,并写出点的对应点的坐标_____________;(2)以原点为位似中心,位似比为1:2,在轴的左侧,画出将放大后的,并写出点的对应点的坐标___________________;(3)___________________.23.(8分)如图,矩形中,,,点为边延长线上的一点,过的中点作交边于,交边的延长线于,,交边于,交边于(1)当时,求的值;(2)猜想与的数量关系,并证明你的猜想24.(8分)如图,二次函数的图象与一次函数的图象交于点及点(1)求二次函数的解析式及的坐标(2)根据图象,直按写出满足的的取值范围25.(10分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,,求的边上的高.(3)在(2)的条件下,求的面积.26.(10分)解方程:5x(x+1)=2(x+1)

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且,

则.

故选:A.本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.2、B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,

解得:m=1.

故选:B.此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.3、C【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.【详解】解:连接DO∵PD与⊙O相切于点D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,设PA=x,则,解得:x=1,∴PA=1.故答案为C.本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.4、C【详解】解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选C.5、B【解析】根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.6、D【解析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【详解】∵摸到红球是随机事件,∴选项A不符合题意;∵摸到白球是随机事件,∴选项B不符合题意;

∵红球比白球多,∴摸到红球比摸到白球的可能性大,∴选项C不符合题意,D符合题意.故选:D.此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.7、D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;

B、不是轴对称图形,是中心对称图形,故选项错误;

C、是轴对称图形,不是中心对称图形,故选项错误;

D、是轴对称图形,是中心对称图形,故选项正确.

故选:D.本题考查了中心对称图形与轴对称图形的概念.

轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;

中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.8、D【分析】先移项,然后利用因式分解法解方程.【详解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=1.故选:D.本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9、D【解析】根据特殊角的三角函数值及负指数幂的定义求解即可.【详解】故选:D本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.10、C【分析】先根据垂径定理由OA⊥BC得到,然后根据圆周角定理计算即可.【详解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故选:C.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.二、填空题(每小题3分,共24分)11、1【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案为:1.此题考查的是实数的混合运算,掌握立方根的定义、零指数幂的性质和负指数幂的性质是解决此题的关键.12、2或.【分析】根据题意可得分两种情况讨论:①当∠BPE=90°时,点B、P、F三点共线,②当∠PEB=90°时,证明四边形AEPF是正方形,进而可求得BP的长.【详解】根据E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,分两种情况讨论:①当∠BPE=90°时,如图1,点B、P、F三点共线,根据翻折可知:∵AF=PF=3,AB=4,∴BF=5,∴BP=BF﹣PF=5﹣3=2;②当∠PEB=90°时,如图2,根据翻折可知:∠FPE=∠A=90°,∠AEP=90°,AF=FP=3,∴四边形AEPF是正方形,∴EP=3,BE=AB﹣AE=4﹣3=1,∴BP===.综上所述:BP的长为:2或.故答案为:2或.本题主要考查了折叠的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.13、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.14、(-2,0);【分析】由二次函数的顶点式,即可得到答案.【详解】解:二次函数y=3(x+2)的顶点坐标是(,0);故答案为:(,0);本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的顶点坐标.15、-1【分析】将表中数值选其中三组代入解析式得方程组,解方程组得到函数解析式,再把x=4代入求值即可.【详解】解:将表中数值选其中三组代入解析式得:解得:所以解析式为:当x=4时,故答案为:-1本题考查了待定系数法求二次函数的解析式,根据表中数据求出二次函数解析式是解题的关键.16、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.17、【分析】贴纸部分的面积可看作是扇形BAC的面积减去扇形DAE的面积.【详解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:本题考查扇形面积,解题的关键是掌握扇形面积公式.18、150【分析】设实际距离为x千米,根据比例尺=图上距离:实际距离计算即可得答案.【详解】设实际距离为x千米,5厘米=0.00005千米,∵比例尺为1:3000000,图上距离为5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案为:150本题考查了比例尺的定义,能够根据比例尺由图上距离正确计算实际距离是解题关键,注意单位的换算.三、解答题(共66分)19、,见解析【分析】列表法展示所有等可能的结果数,找出甲、乙选择同1部电影的结果数,然后利用概率公式求解.【详解】解:列表如下:由表可知,共有9种等可能结果,其中选择同一部电影的结果为3种,∴(他们选择同一部电影).本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、∠C=25°.【分析】连接OB,利用切线的性质OB⊥AB,进而可得∠BOA=50°,再利用外角等于不相邻两内角的和,即可求得∠C的度数.【详解】解:如图,连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,∵∠A=40°,∴∠BOA=50°,又∵OC=OB,∴∠C=∠BOA=25°.本题主要考查切线的性质,解决此类题目时,知切点,则连半径,若不知切点,则作垂直.21、(1)相同;(2)2;(3).【分析】(1)确定摸到红球的概率和摸到白球的概率,比较后即可得到答案;(2)根据频率即可计算得出n的值;(3)画树状图即可解答.【详解】(1)当n=1时,袋子中共3个球,∵摸到红球的概率为,摸到白球的概率为,∵摸到红球和摸到白球的可能性相同,故答案为:相同;(2)由题意得:,得n=2,故答案为:2;(3)树状图如下:根据树状图呈现的结果可得:(摸出的两个球颜色不同)此题考查事件的概率,确定事件可能发生的所有情况机会应是均等的,某事件发生的次数,即可代入公式求出事件的概率.22、(1)画图见解析,;(2)画图见解析,;(3).【分析】(1)先作出A、B、C三点关于原点对称的点A1、B1、C1,再顺次连接即可;利用关于原点对称的点的坐标特点即可得出点A1的坐标;(2)利用位似图形的性质分别作出A、B、C三点的对应点A2、B2、C2,再顺次连接即可;利用位似图形的性质即可得出点A2的坐标;(3)先根据勾股定理的逆定理判断△ABC的形状,进一步即可求出的度数,再根据位似图形的性质和特殊角的三角函数值解答即可.【详解】解:(1)如图,即为所求,,故答案为:;(2)如图即为所求,,故答案为:;(3)∵,∴,∴∠ACB=90°,AC=BC,∴∠BAC=45°,∴.故答案为:.本题考查了中心对称图形的作图、位似作图、等腰直角三角形的判定和性质以及特殊角的三角函数值等知识,属于基本题型,熟练掌握上述知识是解答的关键.23、(1);(2),证明见解析【分析】(1)根据E为DP中点,,可得出EH=2,再利用平行线分线段对应成比例求解即可;(2)作交于点,可求证∽,利用相似三角形的性质求解即可.【详解】解:(1)∵四边形是矩形,∴∴∵∴,∵∴∴∴∴(2)答:证明:作交于点则,∵,,,∴∴∽∴∴本题考查的知识点是相似三角形的判定定理及其性质以及平行线分线段成比例定理,解此题的关键是利用矩形的性质求出EH的长.24、(1)或,点B的坐标为(4,3);(2)当时,kx+b≥(x-2)2+m【分析】(1)先将点A(1,0)代入求出m的值,即可得出二次函数的解析式,再将代入二次函数的解析式即可求出的坐标;(2)根据图象和A、B的交点坐标可直接求出的x的取值范围.【详解】解:(1)∵二次函数y=(x-2)2+m的图象经过点A(1,0)∴解得:∴二次函数的解析式为解得:(不合题意,舍去)∴点B的坐标为(4,3)(2)由图像可知二次函数y=(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论