版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如果分式在实数范围内有意义,则的取值范围是()A. B. C.全体实数 D.2.下列各分式中,是最简分式的是().A. B. C. D.3.若一次函数的函数值随的增大而增大,则()A. B. C. D.4.若把分式中的x、y都扩大4倍,则该分式的值()A.不变 B.扩大4倍 C.缩小4倍 D.扩大16倍5.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的()倍.A. B. C. D.6.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠A B.∠BOC=90°+∠AC.∠BOC=90°+∠A D.∠BOC=90°-∠A7.如图,在△ABC中,AB=6,AC=7,BC=5,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.18 B.13 C.12 D.118.如图,△ABC≌△EBD,∠E=50°,∠D=62°,则∠ABC的度数是()A.68° B.62° C.60° D.58°9.下列运算中,结果是a5的是()A.a2•a3 B.a10a2 C.(a2)3 D.(-a)510.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF二、填空题(每小题3分,共24分)11.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD②AB=CD③AB⊥BC④AO=OC其中正确的结论是_______________.(把你认为正确的结论的序号都填上)12.观察表格,结合其内容中所蕴含的规律和相关知识可知b=__________;列举猜想与发现3,4,532=4+55,12,1352=12+137,24,2572=24+25……17,b,c172=b+c13.满足的整数的和是__________.14.如图,在四边形ABCD中,AB=AC,BC=BD,若,则______.(用含的代数式).15.不等式组的解是____________16.对于非零的两个实数a、b,规定a⊕b=1b-1a,若2⊕(2x﹣1)=1,则17.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.18.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=________.三、解答题(共66分)19.(10分)如图,在10×10的正方形网格中,每个小正方形的边长为1.已知点A、B都在格点上(网格线的交点叫做格点),且它们的坐标分别是A(2,-4)、B(3,-1).(1)点关于轴的对称点的坐标是______;(2)若格点在第四象限,为等腰直角三角形,这样的格点有个______;(3)若点的坐标是(0,-2),将先沿轴向上平移4个单位长度后,再沿轴翻折得到,画出,并直接写出点点的坐标;(4)直接写出到(3)中的点B1距离为10的两个格点的坐标.20.(6分)已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=1.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.21.(6分)如图1,在和中,,,.(1)若三点在同一直线上,连接交于点,求证:.(2)在第(1)问的条件下,求证:;(3)将绕点顺时针旋转得到图2,那么第(2)问中的结论是否依然成立?若成立,请证明你的结论:若不成立,请说明理由.22.(8分)如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;(2)若△AEF的周长为8cm,且BC=4cm,求△ABC的周长.23.(8分)崂山区某班全体同学参加了为一名因工受伤女教师捐款的活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款金额的众数;(3)该班平均每人捐款多少元?24.(8分)按下列要求解题(1)计算:(2)化简:(3)计算:25.(10分)解一元二次方程.(1).(2).26.(10分)观察以下等式:,,,,……(1)依此规律进行下去,第5个等式为_______,猜想第n个等式为______(n为正整数);(2)请利用分式的运算证明你的猜想.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据分式有意义的条件即可求出答案.【详解】解:由题意可知:,,故选A.本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.2、A【分析】根据定义进行判断即可.【详解】解:A、分子、分母不含公因式,是最简分式;B、==x-y,能约分,不是最简分式;C、==,能约分,不是最简分式;D、=,能约分,不是最简分式.故选A.本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.3、B【解析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.4、A【分析】把x换成4x,y换成4y,利用分式的基本性质进行计算,判断即可.【详解】,∴把分式中的x,y都扩大4倍,则分式的值不变.故选:A.本题考查了分式的基本性质.解题的关键是掌握分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、C【分析】本题可利用工作总量作为相等关系,借助方程解题.【详解】解:设一台插秧机的工作效率为x,一个人工作效率为y.则10my=(m﹣3)x.∴.故选:C.本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系,工程问题要有“工作效率”,“工作时间”,“工作总量”三个要素,数量关系为:工作效率×工作时间=工作总量.6、C【详解】∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB))=(180°-∠A)=90°−∠A,
根据三角形的内角和定理,可得
∠OBC+∠OCB+∠BOC=180°,
∴90°-∠A+∠BOC=180°,
∴∠BOC=90°+∠A.
故选C.(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;(2)此题还考查了角平分线的定义,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.7、C【解析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】∵ED是AB的垂直平分线,∴AD=BD.∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=7+5=1.故选C.本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.8、A【分析】根据三角形的内角和定理求出∠EBD,根据全等三角形的性质解答.【详解】解:∵∠E=50°,∠D=62°,∴∠EBD=180°-∠E-∠D=180°-50°-62°=68°,∵△ABC≌△EBD,∴∠ABC=∠EBD=68°.故选A.本题考查了全等三角形的性质和三角形的内角和定理.掌握全等三角形的对应角相等是解题的关键.9、A【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方、及乘方的意义逐项计算即可.【详解】A.a2•a3=a5,故正确;B.a10a2=a8,故不正确;C.(a2)3=a6,故不正确;D.(-a)5=-a5,故不正确;故选A.本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘.10、A【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.【详解】解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,∴CE=BE=BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG=BG,DG⊥AB,∴AH=BH,∴∠HAB=∠HBA=22.5°,∴∠EHB=45°,且AE⊥BC,∴∠EHB=∠EBH=45°,∴HE=BE,故选项B不符合题意,故选:A.本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.二、填空题(每小题3分,共24分)11、①②④【分析】四边形ABCD沿直线l对折后互相重合,即△ABC与△ADC关于L对称,又有AD∥BC,则有四边形ABCD为平行四边形.根据轴对称的性质可知.【详解】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.12、1【分析】根据猜想与发现得出规律,即第一个数的平方等于两相邻数的和,故b的值可求.【详解】解:∵32=4+5,52=12+13,72=24+25…,∴172=289=b+c=1+145,∴b=1,故答案为:1.此题主要考查了数字类变化规律,解答此题的关键是根据已知条件得出规律,利用规律求出未知数的值.13、1【分析】根据估算无理数的大小的方法确定和的范围,可知满足条件的整数的情况.【详解】∵,,∴,,∴,满足条件的整数为:2,3,4,5,∴满足条件的整数的和为2+3+4+5=1.故答案为:1.本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.14、【分析】延长DA到E点,使AE=AC,连接BE,易证∠EAB=∠BAC,可得△AEB≌△ABC,则∠E=∠ACB=,BE=BC=BD,则∠BDE=∠E=,可证∠DBC=∠DAC=4-180°,即可求得∠BCD的度数.【详解】延长DA到E点,使AE=AC,连接BE∵AB=AC,∴∠ACB=∠ABC=,∠BAD=2∴∠BAC=180°-2,∠EAB=180°-2又AB=AB∴△AEB≌△ABC(SAS)∴∠E=∠ACB=,BE=BC=BD∴∠BDE=∠E=∴∠DBC=∠DAC=∠BAD-∠BAC=2-(180°-2)=4-180°∴∠BCD=故答案为:本题考查的是等腰三角形的性质及三角形的全等,构造全等三角形是解答本题的关键.15、【分析】根据一元一次不等式组解集的确定方法,即可求解.【详解】由,可得:;故答案是:.本题主要考查确定一元一次不等式组的解集,掌握确定一元一次不等式组解集的口诀:“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.16、56【分析】先根据规定运算把方程转化为一般形式,然后把分式方程转化为整式方程求解,再进行检验即可得解.【详解】解:2⊕(2x﹣1)=1可化为12x-1﹣12方程两边都乘以2(2x﹣1)得,2﹣(2x﹣1)=2(2x﹣1),解得x=56检验:当x=56时,2(2x﹣1)=2(2×56﹣1)=4所以,x=56即x的值为56故答案为56本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17、−1<x<2.【解析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于018、60°【分析】本题需先证出△BOC≌△AOD,求出∠C,再求出∠DAC,最后根据三角形的内角和定理即可求出答案.【详解】在△BOC和△AOD中,∵OA=OB,∠O=∠O,OC=OD,∴△BOC≌△AOD,∴∠C=∠D=35°.∵∠DAC=∠O+∠D=50°+35°=85°,∴∠AEC=180°﹣∠DAC﹣∠C=180°﹣85°﹣35°=60°.故答案为60°.本题主要考查了全等三角形的判定和性质,在解题时要注意和三角形的内角和定理相结合是本题的关键.三、解答题(共66分)19、(1)(3,1);(2)4;(3)画图见解析,B1(-3,3);(4)(3,-5)或(5,-3).【分析】(1)根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案;
(2)根据题意分别确定以AB的直角边可得两个点,再以AB为斜边可得两个点,共4个点;
(3)根据题意确定出A、B、C三点的对应点,再连接可得△A1B1C1,进而可得点B1的坐标;
(4)利用勾股定理可得与点B1距离为10的两个点的坐标,答案不唯一.【详解】(1)B
(3,-1)关于x轴的对称点的坐标是(3,1),
故答案为:(3,1);
(2)△ABC为等腰直角三角形,格点C在第四象限,AB为直角边,B为直角顶点时,C点坐标为(6,-2),AB为直角边,A为直角顶点时,C点坐标为(5,-5),AB为斜边时,C点坐标为(1,-2),(4,-3),则C点坐标为(6,-2),(5,-5),(1,-2),(4,-3),共4个,
故答案为:4;
(3)如图所示,即为所求,B1(-3,3);
(4)∵,∴符合题意的点可以为:(3,-5),(5,-3).本题主要考查了轴对称变换以及平移变换、等腰三角形的性质、勾股定理的应用,正确得出对应点位置是解题关键.20、(1)证明见解析(2)答案见解析(3)8【解析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=181°﹣2∠ONE=91°﹣∠NEA,即2∠ONE﹣∠NEA=91°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=1∴|a﹣b|+(b﹣4)2=1∵|a﹣b|≥1,(b﹣4)2≥1∴|a﹣b|=1,(b﹣4)2=1∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△BAH中,∴△AOE≌△BAH(ASA)∴AH=OE在△ONE和△AMH中,∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=181°﹣2∠ONE=91°﹣∠NEA∴2∠ONE﹣∠NEA=91°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.21、(1)见解析;(2)见解析;(3)成立,理由见解析【分析】(1)根据SAS得出△BAD≌△CAE;(2)根据△BAD≌△CAE,得出∠ABD=∠ACE,根据直角三角形两锐角互余和对顶角相等即可得出答案;(3)延长BD交CE于点M,交AC于点F.根据SAS证明ΔBAD≌ΔCAE,得出∠ABD=∠ACE,根据直角三角形两锐角互余和对顶角相等即可得出答案.【详解】(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵AB=AC,AD=AE,∴ΔBAD≌ΔCAE.(2)∵ΔBAD≌ΔCAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.∵∠AFB=∠CFD,∴∠ACE+∠CFD=90°,∴∠CDF=90°,∴BD⊥CE.(3)成立.理由如下:延长BD交CE于点M,交AC于点F.∵∠BAC=∠DAE=90°,∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.∵AB=AC,AD=AE,∴ΔBAD≌ΔCAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.∵∠AFB=∠CFM,∴∠CMF=90°,∴BD⊥CE.本题考查了全等三角形的判定与性质和三角形内角和定理等知识,根据已知得出△BAD≌△CAE是解题的关键.22、(1)∠BOE+∠COF=50°;(2)12cm.【解析】(1)两直线平行,内错角相等,以及根据角平分线性质,可得到从而求得∠BOE+∠COF的度数.(2)根据,可得△FOC、△EOB均为等腰三角形,由此把△AEF的周长转化为AC+AB,进而可得到△ABC的周长.【详解】解:(1)∵EF∥BC,∴∠OCB=∠COF,∠OBC=∠BOE.又∵BO,CO分别是∠BAC和∠ACB的角平分线,∴∠COF=∠FCO=∠ACB=30°,∠BOE=∠OBE=∠ABC=20°.∴∠BOE+∠COF=50°.(2)∵∠COF=∠FCO,∴OF=CF.∵∠BOE=∠OBE,∴OE=BE.∴△AEF的周长=AF+OF+OE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京播音统考真题及答案
- 合作单位项目服务保障承诺书6篇
- 新加坡留学工作合同模板(3篇)
- 2025年分辨奥特曼测试题目及答案
- 行业采购验收标准流程模板
- 婚庆活动安全保障责任书9篇
- 如何做好学习计划的议论文(4篇)
- 项目管理进度控制工具多项目协调管理版
- 人才招聘与面试问题记录模板
- 企业信息化建设规划与实施方案模板
- 《119全国消防日》 课件 小学安全教育主题班会
- 2025年国企计算机岗位笔试真题及答案
- 采煤沉陷区综合治理项目初步设计
- 2025年杭州西湖区文新街道编外用工招聘4人考试参考题库及答案解析
- MOOC 创业基础-暨南大学 中国大学慕课答案
- GB∕T 19078-2016 铸造镁合金锭
- 种鸡饲养要点
- 婚娶实用帖式(DOC)
- 利用MATLAB实现Sa信号的抽样与重构仿真
- 南开大学 近物实验99 微弱信号检测
- 部编版四年级语文上册课件《说教材、说课标、说建议》
评论
0/150
提交评论