




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,等腰△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且MN=BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在MN从左至右的运动过程中,△BMD和△CNE的面积之和()A.保持不变 B.先变小后变大C.先变大后变小 D.一直变大3.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.4.若,则下列不等式正确的是()A. B. C. D.5.若,则点(x,y)在第()象限.A.四 B.三 C.二 D.一6.用下列长度的三条线段,能组成一个三角形的是()A. B. C. D.7.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E8.(-a5)2+(-a2)5的结果是()A.0 B. C. D.9.下列分式中,最简分式的个数是()A.1个 B.2个 C.3个 D.4个10.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.311.如图,在△ABC中,AB=AC,依据尺规作图的痕迹,判断下列结论错误的是()A.AD⊥BC B.BD=CD C.DE∥AB D.DE=BD12.计算的结果是()A.a2 B.-a2 C.a4 D.-a4二、填空题(每题4分,共24分)13.在中,,点是中点,,______.14.点P关于轴的对称点坐标为________.15.我国南宋数学家杨辉所著的《详解九章算术》一书上,用如图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”,请计算的展开式中从左起第三项的系数为__________.16.若分式方程无解,则a=_____________.17.如图,已知CA=BD判定△ABD≌△DCA时,还需添加的条件是__________.18.若m+n=1,mn=2,则的值为_____.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.20.(8分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点驶向终点,在整个行程中,龙舟离开起点的距离(米)与时间(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点与终点之间相距.(2)分别求甲、乙两支龙舟队的与函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?21.(8分)四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)22.(10分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?23.(10分)小李在某商场购买两种商品若干次(每次商品都买),其中前两次均按标价购买,第三次购买时,商品同时打折.三次购买商品的数量和费用如下表所示:购买A商品的数量/个购买B商品的数量/个购买总费用/元第一次第二次第三次(1)求商品的标价各是多少元?(2)若小李第三次购买时商品的折扣相同,则商场是打几折出售这两种商品的?(3)在(2)的条件下,若小李第四次购买商品共花去了元,则小李的购买方案可能有哪几种?24.(10分)已知:如图,在平面直角坐标系中,已知,,.(1)在下图中作出关于轴对称的,并写出三个顶点的坐标;(2)的面积为(直接写出答案);(3)在轴上作出点,使最小(不写作法,保留作图痕迹).25.(12分)计算(1)4(a﹣b)2﹣(2a+b)(2a﹣b).(2)先化简,再求值(a+2﹣)÷,其中a=126.计算(1)26(2)(2)2﹣(2)(2)
参考答案一、选择题(每题4分,共48分)1、A【分析】根据一次函数的图象与系数的关系即可解答.【详解】对于一次函数,∵k=-2﹤0,∴函数图象经过第二、四象限,又∵b=-1﹤0,∴图象与y轴的交点在y轴的负半轴,∴一次函数的图象经过第二、三、四象限,不经过第一象限,故选:A.本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与系数的关系是解答的关键.2、B【分析】妨设BC=2a,∠B=∠C=α,BM=m,则CN=a﹣m,根据二次函数即可解决问题.【详解】解:不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a﹣m,则有S阴=•m•mtanα+(a﹣m)•(a﹣m)tanα=tanα(m2+a2﹣2am+m2)=tanα(2m2﹣2am+a2)=;当时,有最小值;∴S阴的值先变小后变大,故选:B.此题考查等腰三角形的性质,关键根据二次函数的性质得出面积改变规律.3、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.4、B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m>n,∴m-2>n-2,∴选项A不符合题意;
∵m>n,∴,∴选项B符合题意;∵m>n,∴4m>4n,∴选项C不符合题意;
∵m>n,∴-5m<-5n,∴选项D不符合题意;
故选:B此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5、D【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出点所在的象限.【详解】解:∵,∴,
解得:,
则点(1,1)在第一象限,
故选:D.本题考查解二元一次方程组,以及非负数的性质,点的坐标,熟练掌握方程组的解法是解题的关键.6、B【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析.【详解】解:A、1+2=3,不能组成三角形,故此选项不合题意;
B、2+2>3,能组成三角形,故此选项符合题意;
C、2+2=4,不能组成三角形,故此选项不符合题意;
D、5+6<12,不能组成三角形,故此选项不合题意;
故选B.此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7、C【分析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得∠B=∠D,因为,若≌,则还需要补充的条件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故选C本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形判定定理.8、A【分析】直接利用幂的乘方运算法则化简进而合并求出答案.【详解】(-a5)2+(-a2)5=a11-a11=1.故选A.此题主要考查了幂的乘方运算,正确化简各式是解题关键.9、B【分析】利用最简分式的定义逐个分析即可得出答案.【详解】解:,,,这三个不是最简分式,所以最简分式有:,共2个,故选:B.本题考查了最简分式的定义,熟练掌握相关知识点是解题关键.10、A【分析】根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴进行分析,得出共有6处满足题意.【详解】选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.本题考查了轴对称图形的定义,根据定义构建轴对称图形,成为轴对称图形每种可能性都必须考虑到,不能有遗漏.11、D【分析】由尺规作图痕迹可知AD是∠BAC平分线,另一条为AC的垂直平分线,由此即可求解.【详解】解:如下图所示,由尺规作图痕迹可知AD是∠BAC平分线,EF是AC的垂直平分线,
又已知AB=AC,∴由等腰三角形的“三线合一”性质可知,AD是底边BC上的高,AD是△ABC的中线,∴AD⊥BC,BD=CD,故选项A和选项B正确,又EF是AC的垂直平分线,∴E是AC的中点,由直角三角形斜边上的中线等于斜边的一半可知,EA=ED,∴∠EAD=∠EDA,又∠EAD=∠BAD,∴∠EDA=∠BAD,∴DEAB,∴选项C正确,选项D缺少已知条件,推导不出来,故选:D.本题考查了尺规作图角平分线和垂直平分线的作法、等腰三角形的性质等,熟练掌握其作图方法及其性质是解决本题的关键.12、D【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【详解】解:如图,∵点M是AB中点,
∴AM=CM,
∴∠ACM=∠A=25°,∵∠ACB=90°,
∴∠BCM=90°-25°=65°,
故答案为:65°.本题考查了等腰三角形和直角三角形的性质,熟练掌握等边对等角的性质定理是解题的关键.14、【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P关于轴的对称点坐标为;故答案为.本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.15、1【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;∴(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),
∴第三项系数为1+2+3+…+7=1,
故答案为:1.本题考查数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.16、1【分析】先通过去分母,把分式方程化为整式方程,求出,根据分式方程无解,可得是分式方程有增根,进而即可求解.【详解】,去分母得:,解得:,∵分式方程无解,∴是增根,即:8-a=1,∴a=1.故答案是:1.本题主要考查分式方程的增根,学会去分母,把分式方程化为整式方程,熟练掌握分式方程的增根的意义:使分式方程的分母等于零的根,是解题的关键.17、AB=CD【分析】条件是AB=CD,理由是根据全等三角形的判定定理SSS即可推出△ABD≌△DCA.【详解】解:已知CA=BD,AD=AD∴要使△ABD≌△DCA则AB=CD即可利用SSS推出△ABD≌△DCA故答案为AB=CD.本题主要考查对全等三角形的判定定理的理解和掌握,掌握三角形的判定定理是解题的关键.18、【解析】三、解答题(共78分)19、△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解析【解析】分析:由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.本题解析:△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).点睛:本题考查了等三角形的性质及全等三角形的判定,解题的关键是熟掌握全等三角形的判定定理.本题属于基础题,难度不大,解决该题型题目时,根据相等的边角关系利用全等三角形的判定定理证出结论是三角形全等是关键.20、(1)3000;(2)甲龙舟队的与函数关系式为,乙龙舟队的与函数关系式为;(3)甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.【分析】(1)直接根据图象即可得出答案;(2)分别用待定系数法即可求出甲、乙两支龙舟队的y与x函数关系式;(3)先求出两支龙舟队相遇的时间,然后结合图像分四种情况进行讨论,相遇前两次,相遇后两次,分别进行计算即可.【详解】(1)根据图象可知,起点与终点之间相距3000m(2)设甲龙舟队的与函数关系式为把代入,可得解得∴甲龙舟队的与函数关系式为设乙龙舟队的与函数关系式为把,代入,可得,解得∴乙龙舟队的与函数关系式为(3)令,可得即当时,两龙舟队相遇当时,令,则(符合题意);当时,令,则(符合题意);当时,令,则(符合题意);当时,令,则(符合题意);综上所述:甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.本题主要考查一次函数的应用,掌握待定系数法并分情况讨论是解题的关键.21、①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;详见解析【分析】根据题意,即可写出该图形的性质,然后选择一个进行证明即可.【详解】解:如图:①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;理由:①AD=CD,AB=CB,BD=BD,∴△ABD≌△CBD;∴△ABD与△CBD关于直线BD对称;②由①△ABD≌△CBD,∴∠DAB=∠DCB;③∵AD=CD,AB=CB,∴点B、点D在线段AC的垂直平分线上,∴AC⊥BD;④由③可知,点B、点D在线段AC的垂直平分线上,∴BD平分AC;⑤由①知△ABD≌△CBD,∠ADB=∠CDB,∠ABD=∠CBD,∴BD平分∠ADC和∠ABC;本题考查了“筝形”的性质,全等三角形的判定和性质,垂直平分线的性质,在轴对称的性质,解题的关键是熟练掌握所学的性质,正确找出“筝形”的性质.22、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.【解析】(1)观察图象可得零件总个数,观察AB段可得甲机器的速度,观察BC段结合甲的速度可求得乙的速度;(2)设当时,与之间的函数解析式为,利用待定系数法求解即可;(3)分乙机器出现故障前与修好故障后两种情况分别进行讨论求解即可.【详解】(1)观察图象可知一共加工零件270个,甲机器每小时加工零件:(90-50)÷(3-1)=20个,乙机器排除故障后每小时加工零件:(270-90)÷(6-3)-20=40个,故答案为:270,20,40;设当时,与之间的函数解析式为把,,代入解析式,得解得设甲加工小时时,甲与乙加工的零件个数相等,乙机器出现故障时已加工零件50-20=30个,,;乙机器修好后,根据题意则有,,答:甲加工或时,甲与乙加工的零件个数相等.本题考查了一次函数的应用,弄清题意,读懂函数图象,理清各量间的关系是解题的关键.23、(1)商品标价为80元,商品标价为100元.(2)商场打六折出售这两种商品.(3)有3种购买方案,分别是A商品5个,B商品12个;A商品10个,B商品8个;A商品15个,B商品4个.【分析】(1)可设商品标价为元,商品标价为元,根据图表给的数量关系列出二元一次方程组解答即可.(2)求出第三次商品如果按原价买的价钱,再用实际购买费用相比即可.(3)求出两种商品折扣价之后,根据表中数量关系列出二元一次方程,化简后讨论各种可能性即可.【详解】解:(1)设商品标价为元,商品标价为元,由题意得,解得.所以商品标价为80元,商品标价
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 难点解析人教版八年级上册物理声现象《声音的特性》章节测评练习题(含答案详解)
- 2025历年监理考试真题及答案
- 湖南电工考试题目及答案
- 难点详解人教版八年级上册物理声现象《声音的特性声的利用》同步测试试题(含答案及解析)
- 考点攻克人教版八年级物理《功和机械能》章节测评试卷(含答案详解)
- 重难点解析人教版八年级上册物理声现象《噪声的危害和控制》重点解析练习题(含答案解析)
- 达标测试人教版八年级上册物理声现象《声音的产生与传播》定向攻克试卷(含答案详解)
- 九年级下册的重要考试题及答案
- 复旦大学mba的考试试题及答案
- 光伏电站项目合作框架协议范本5篇
- 常减压装置安全培训课件
- 木薯淀粉品质特性与生长周期关系研究
- 2025至2030中国港口码头行业发展趋势分析与未来投资战略咨询研究报告
- (正式版)DB14∕T 3531-2025 《家居保洁培训规范》
- DB61T 1248-2019 压裂返排液 回配压裂液用水水质要求
- 新人教版七年级上册英语Unit1-7重点短语归纳
- 电力工程服务方案
- 2025年个人车位转租协议书
- 2025至2030中国焦磷酸测序行业市场深度研究及发展前景投资可行性分析报告
- 秋天的校园课件
- 军事审判学自考讲解课件
评论
0/150
提交评论