




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A. B. C. D.2.下列说法中错误的是()A.篮球队员在罚球线上投篮一次,未投中是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上D.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近3.如图,在平面直角坐标系中,点,将沿轴向右平移得,此时四边形是菱形,则点的坐标是()A. B. C. D.4.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+25.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π6.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.=17.下列图形中不是中心对称图形的是()A. B. C. D.8.已知菱形的边长为,若对角线的长为,则菱形的面积为()A. B. C. D.9.如图,中,,,,则的长为()A. B. C.5 D.10.如图是二次函数的图象,使成立的的取值范围是()A. B.C. D.11.如图,在中,点为边中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为()A. B. C. D.12.在一幅长60cm、宽40cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.(60+2x)(40+2x)=2816B.(60+x)(40+x)=2816C.(60+2x)(40+x)=2816D.(60+x)(40+2x)=2816二、填空题(每题4分,共24分)13.一个不透明的袋子中装有除颜色外其他都相同的2个红球和1个黄球,随机摸出一个小球后,放回并摇匀,再随机摸岀一个,则两次都摸到黄球的概率为__________.14.已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.15.如图,,与相交于点,若,,则的值是_______.16.在矩形中,,以点为圆心,为半径的圆弧交于点,交的延长线于点,连接,则图中阴影部分的面积为:__________.17.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.18.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)三、解答题(共78分)19.(8分)某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:(1)该商场每天售出衬衫件(用含的代数式表示);(2)求的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利(填“能”或“不能”)达到1250元?20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,过点C做⊙O的切线,与AE的延长线交于点D,且AD⊥CD.(1)求证:AC平分∠DAB;(2)若AB=10,CD=4,求DE的长.21.(8分)在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树形图如下:小华列出表格如下:第一次
第二次
1
2
3
4
1
(1,1)
(2,1)
(3,1)
(4,1)
2
(1,2)
(2,2)
①
(4,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?22.(10分)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,(1)试证明:△AEP∽△ABC;(2)求y与x之间的函数关系式.23.(10分)如图,已知直线y1=﹣x+3与x轴交于点B,与y轴交于点C,抛物y2=ax2+bx+c经过点B,C并与x轴交于点A(﹣1,0).(1)求抛物线解析式,并求出抛物线的顶点D坐标;(2)当y2<0时、请直接写出x的取值范围;(3)当y1<y2时、请直接写出x的取值范围;(4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式.24.(10分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.25.(12分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.26.如图,在中,点在边上,且,已知,.(1)求的度数;(2)我们把有一个内角等于的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是=,故选:D.本题主要考查了随机事件的概率,随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数,灵活利用概率公式是解题的关键.2、C【分析】根据随机事件的定义可判断A项,根据中心对称图形和必然事件的定义可判断B项,根据概率的定义可判断C项,根据频率与概率的关系可判断D项,进而可得答案.【详解】解:A、篮球队员在罚球线上投篮一次,未投中是随机事件,故本选项说法正确,不符合题意;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,故本选项说法正确,不符合题意;C、“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上,故本选项说法错误,符合题意;D、“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近,故本选项说法正确,不符合题意;故选:C.本题考查了随机事件、必然事件、中心对称图形以及频率与概率的关系等知识,熟练掌握上述知识是解题的关键.3、A【分析】首先由平移的性质,得出点C的纵坐标,OA=DE=3,AD=OE,然后根据勾股定理得出CD,再由菱形的性质得出点C的横坐标,即可得解.【详解】由已知,得点C的纵坐标为4,OA=DE=3,AD=OE∴∵四边形是菱形∴AD=BC=CD=5∴点C的横坐标为5∴点C的坐标为故答案为A.此题主要考查平面直角坐标系中,根据平移和菱形的性质求解点坐标,熟练掌握,即可解题.4、C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.考查二次函数的平移,掌握二次函数平移的规律是解题的关键.5、B【解析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.6、B【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为1的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程1x+1=0中未知数的最高次数不是1,是一元一次方程,故不是一元二次方程;B、方程x1+1x+3=0只含一个未知数,且未知数的最高次数为1的整式方程,故是一元二次方程;C、方程y1+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.是否符合定义的条件是作出判断的关键.7、B【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.故选B.本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.8、B【分析】先求出对角线AC的长度,再根据“菱形的面积等于对角线乘积的一半”,即可得出答案.【详解】根据题意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD为菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案选择B.本题考查的是菱形,难度适中,需要熟练掌握菱形面积的两种求法.9、C【解析】过C作CD⊥AB于D,根据含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【详解】过C作CD⊥AB于D,则∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故选C.本题考查解直角三角形.10、A【分析】先找出抛物线与x轴的交点坐标,根据图象即可解决问题.【详解】解:由图象可知,抛物线与x轴的交点坐标分别为(-3,0)和(1,0),
∴时,x的取值范围为.故选:A.本题考查抛物线与x轴的交点,对称轴等知识,解题的关键是学会数形结合,根据图象确定自变量的取值范围,属于中考常考题型.11、C【分析】根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥AB时AP的长,然后证出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【详解】解:∵动点从点出发,线段的长度为,运动时间为的,根据图象可知,当=0时,y=2∴CD=2∵点为边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=时,y最小,即CP最小根据垂线段最短∴此时CP⊥AB,如下图所示,此时点P运动的路程DA+AP=所以此时AP=∵∠A=∠A,∠APC=∠ACB=90°∴△APC∽△ACB∴即解得:AB=在Rt△ABC中,BC=故选C.此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.12、A【解析】根据题意可知,挂画的长和宽分别为(60+2x)cm和(40+2x)cm,据此可列出方程(60+2x)(40+2x)=2816【详解】若设金色纸边的宽为xcm,则挂画的长和宽分别为(60+2x)cm和(40+2x)cm,可列方程(60+2x)(40+2x)=2816故答案为A.本题考查一元二次方程的应用,找出题中的等量关系是解题关键.二、填空题(每题4分,共24分)13、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.【详解】画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有1种结果,
∴两次都摸到黄球的概率为;
故答案为:.此题考查列表法或树状图法求概率.解题关键在于掌握注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.14、-1【详解】解:如果一点为线段的黄金分割点,那么被分割的较短的边比较大的边等于较大的边比上这一线段的长=≈0.618.∵AB=2,AP﹥BP,∴AP:AB=×2=-1.故答案是:-115、【分析】根据判定三角形相似,然后利用相似三角形的性质求解.【详解】解:∵∴△AEB∽△DEC∴故答案为:本题考查相似三角形的判定和性质,掌握相似三角形对应边成比例,难度不大.16、【分析】首先利用三角函数求的∠DAE的度数,然后根据S阴影=S扇形AEF−S△ADE即可求解.【详解】解:∵,AE=AB,
∴AD=2,DE==2,
∴Rt△ADE中,cos∠DAE==,
∴∠DAE=60°,
则S△ADE=AD⋅DE=×2×2=2,S扇形AEF==,
则S阴影=S扇形AEF−S△ADE=-2.
故答案为.本题考查了扇形的面积公式和三角函数,求的∠DAE的度数是关键.17、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.18、40【解析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.三、解答题(共78分)19、(1);(2)当时,商场平均每天获利1050元;(3)能【分析】(1)根据题意写出答案即可.(2)根据题意列出方程,解出答案即可.(3)令利润代数式为1250,解出即可判断.【详解】(1)根据题意:每天可售出60件,如果每件衬衫每涨价1元,商场平均每天可少售出2件,则商场每天售出衬衫:(2)解得,(不符合题意,舍去).答:当时,商场平均每天获利1050元.(3)根据题意可得:解得:x=5所以,商场平均每天获利能达到1250元本题考查一元二次方程的应用,关键在于理解题意找出等量关系.20、(1)见解析;(1)DE=1【分析】(1)连接OC,利用切线的性质可得出OC∥AD,再根据平行线的性质得出∠DAC=∠OCA,又因为∠OCA=∠OAC,继而可得出结论;(1)方法一:连接BE交OC于点H,可证明四边形EHCD为矩形,再根据垂径定理可得出,得出,从而得出,再通过三角形中位线定理可得出,继而得出结论;方法二:连接BC、EC,可证明△ADC∽△ACB,利用相似三角形的性质可得出AD=8,再证△DEC∽△DCA,从而可得出结论;方法三:连接BC、EC,过点C做CF⊥AB,垂足为F,利用已知条件得出OF=3,再证明△DEC≌△CFB,利用全等三角形的性质即可得出答案.【详解】解:(1)证明:连接OC,∵CD切☉O于点C∴OC⊥CD∵AD⊥CD∴∠D=∠OCD=90°∴∠D+∠OCD=180°∴OC∥AD∴∠DAC=∠OCA∵OA=OC∴∠OCA=∠OAC∴∠DAC=∠OAC∴AC平分DAB(1)方法1:连接BE交OC于点H∵AB是☉O直径∴∠AEB=90°∴∠DEC=90°∴四边形EHCD为矩形∴CD=EH=4DE=CH∴∠CHE=90°即OC⊥BH∴EH=BE=4∴BE=8∴在Rt△AEB中AE=6∵EH=BHAO=BO∴OH=AE=3∴CH=1∴DE=1方法1:连接BC、EC∵AB是直径∴∠ACB=90°∴∠D=∠ACB∵∠DAC=∠CAB∴△ADC∽△ACB∴∠B=∠DCA∴AC1=10·AD∵AC1=AD1+CD1∴10·AD=AD1+16∴AD=1舍AD=8∵四边形ABCE内接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴∠DEC=∠DCA∵∠D=∠D∴△DEC∽△DCA∴∴CD1=AD·DE∴16=8·DE∴DE=1;方法3:连接BC、EC,过点C做CF⊥AB,垂足为F∵CD⊥AD,∠DAC=∠CAB∴CD=CF=4,∠D=∠CFB=90°∵AB=10∴OC=OB=5∴OF=3∴BF=OB-OF=5-3=1∵四边形ABCE内接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴△DEC≌△CFB∴DE=FB=1.本题是一道关于圆的综合题目,涉及的知识点有切线的性质、平行线的性质、矩形的性质、相似三角形的判定及性质、全等三角形的判定及性质等,综合利用以上知识点是解此题的关键.21、(1)放回(2)(3,2)(3)小明获胜的可能性大.理由见解析【分析】(1)根据树形图法的作法可知.(2)根据排列顺序可知.(3)游戏公平与否,比较概率即知.【详解】解:(1)放回.(2)(3,2).(3)理由如下:∵根据小明的游戏规则,共有12种等可能结果,数字之和为奇数的有8种,∴概率为:.∵根据小华的游戏规则,共有16种等可能结果,数字之和为奇数的有8种,∴概率为:.∵,∴小明获胜的可能性大.22、(1)见解析;(2)y=.(0<x<6.4)【分析】(1)可证明△APE和△ACB都是直角三角形,还有一个公共角,从而得出:△AEP∽△ABC;(2)由勾股定理得出BC,再由相似,求出PE=x,,即可得出y与x的函数关系式.【详解】(1)∵PE⊥AB,∴∠APE=90°,又∵∠C=90°,∴∠APE=∠C,又∵∠A=∠A,∴△AEP∽△ABC;(2)在Rt△ABC中,AB=10,AC=8,∴BC=,由(1)可知,△APE∽△ACB∴,又∵AP=x,即,∴PE=x,,∴=.(0<x<6.4)本题考查了相似三角形的性质问题,掌握相似三角形的性质以及判定定理是解题的关键.23、(1);(2)x<﹣1或x>3;(3)0<x<3;(4)y=-x2+2x+1.【分析】(1)列方程得到C(0,3),B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),列方程即可得到结论;(2)由图象即可得到结论;(3)由图象即可得到结论;(4)当根据平移的性质即可得到结论.【详解】解:(1)对于y1=﹣x+3,当x=0时,y=3,∴C(0,3),当y=0时,x=3,∴B(3,0),∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线解析式为y=a(x+1)(x﹣3),抛物线过点C(0,3),∴3=a(0+1)(0﹣3),解得:a=-1,∴y=-(x+1)(x﹣3)=-x2+2x+3,∴顶点D(1,4);(2)由图象知,当y2<0时、x的取值范围为:x<﹣1或x>3;(3)由图象知当y1<y2时、x的取值范围为:0<x<3;(4)当x=1时,y=﹣1+3=2,∵抛物线向下平移2个单位,∴抛物线解析式为y=﹣x2+2x+3﹣2=﹣x2+2x+1.故答案为:(1)(1,4);(2)x<﹣1或x>3;(3)0<x<3;(4)y=x2+2x+1.本题考查了待定系数法求二次函数解析式,二次函数图象的平移,及二次函数的性质,是一道综合性比较强的题,看懂图象是解题的关键.24、(1),;(1)存在,,,,,;(3)【分析】(1)由点A在双曲线上,可得k的值,进而得出双曲线的解析式.设(),过A作AP⊥x轴于P,BQ⊥y轴于Q,直线BQ和直线AP相交于点M.根据=3解方程即可得出k的值,从而得出点B的坐标,把A、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年高考英语复习新题速递之应用文阅读理解(2025年7月)
- 知识题库-化工仪表知识考试题目及答案
- 技术大潮下的研发面试挑战:面试题库
- 细胞营销计划执行方案
- 胃癌术后病人护理查房
- 2019届高三人教版语文一轮复习课件:第三专题三第二节准确理解情境正确书写关键字
- 神经外科进修三个月汇报
- 系统解剖学消化系统详解
- 现代医院管理的创新思维
- 团建活动照片策划与呈现
- 中医艾灸养生护理
- 2025届湖南省长沙市一中物理高一上期中达标检测模拟试题含解析
- 工程施工重点、难点分析及保证措施
- 2024城市电缆线路岩土工程勘察规范
- 变电站巡检维护服务方案
- 华为质量回溯(根因分析与纠正预防措施)模板
- 2023版评审准则和CNAS对照表
- CATIA CAA 二次开发详细教程(11) 程序的发布
- 分布式光伏发电项目可行性分析报告(方案)讲解演示模板ppt课件-图文
- 高空作业安全刷漆施工方案
- 医疗康养项目运营方案
评论
0/150
提交评论