




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若,的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.2.如图,中,与的平分线交于点,过点作交于点,交于点,那么下列结论:①是等腰三角形;②;③若,;④.其中正确的有()A.个 B.个 C.个 D.个3.下列实数中,是无理数的是()A. B. C. D.4.如图,已知,点,,,…在射线上,点,,,…在射线上,,,,…均为等边三角形,若,则的边长为()A.8 B.16 C.24 D.325.如图,已知,,,,则下列结论错误的是()A. B. C. D.6.下列各组数中,是方程2x+y=7的解的是()A. B. C. D.7.已知点(,3),B(,7)都在直线上,则的大小关系为()A. B. C. D.不能比较8.满足下列条件的,不是直角三角形的是()A. B.C. D.9.若am=8,an=16,则am+n的值为()A.32 B.64 C.128 D.25610.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣311.直角坐标系中,点在一次函数的图象上,则的值是()A. B. C. D.12.二次三项式(是整数),在整数范围内可分为两个一次因式的积,则的所有可能值有()个A.4 B.5 C.6 D.8二、填空题(每题4分,共24分)13.设三角形三边之长分别为3,7,,则a的取值范围为______.14.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为________.15.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.16.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是_______17.已知a+b=5,ab=3,=_____.18.如图,函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是______.三、解答题(共78分)19.(8分)先化简,再求值,其中.20.(8分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.21.(8分)先阅读下题的解答过程,然后解答后面的问题,已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值解法一:设2x3﹣x2+m=x+m=(2x+1)(x2+ax+b)则2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得∴m=.解法二:设2x3﹣x2+m=A(2x+1)(A为整式)由于上式为恒等式,为方便计算取x=,,故m=选择恰当的方法解答下列各题(1)已知关于的多项式x2+mx﹣15有一个因式是x﹣3,m=.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值:(3)已知x2+2x+1是多项式x3﹣x2+ax+b的一个因式,求a,b的值,并将该多项式分解因式.22.(10分)如图,相交于点,.(1)求证:;(2)若,求的度数.23.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.24.(10分)已知方程组的解是,则方程组的解是_________.25.(12分)一次函数的图象过M(6,﹣1),N(﹣4,9)两点.(1)求函数的表达式.(2)当y<1时,求自变量x的取值范围.26.如图(1),在ABC中,,BC=9cm,AC=12cm,AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,,DE=4cm,DF=5cm,.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.
参考答案一、选择题(每题4分,共48分)1、D【分析】分别写出、都扩大3倍后的分式,再化简与原式比较,即可选择.【详解】当、都扩大3倍时,A、,故A错误.B、,故B错误.C、,故C错误.D、,故D正确.故选D.本题考查分式的基本性质,解题关键是熟练化简分式.2、B【分析】根据角平分线的定义和平行线的性质可得∠DBF=∠DFB,∠ECF=∠EFC,然后利用等角对等边即可得出DB=DF,EF=EC,从而判断①和②;利用三角形的内角和定理即可求出∠ABC+∠ACB,然后利用角平分线的定义和三角形的内角和定理即可求出∠BFC,从而判断③;然后根据∠ABC不一定等于∠ACB即可判断④.【详解】解:∵与的平分线交于点,∴∠DBF=∠FBC,∠ECF=∠FCB∵∴∠DFB=∠FBC,∠EFC=∠FCB∴∠DBF=∠DFB,∠ECF=∠EFC∴DB=DF,EF=EC,即是等腰三角形,故①正确;∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°∴∠ABC+∠ACB=180°-∠A=130°∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°∴∠BFC=180°-(∠FBC+∠FCB)=115°,故③正确;∵∠ABC不一定等于∠ACB∴∠FBC不一定等于∠FCB∴BF不一定等于CF,故④错误.正确的有①②③,共3个故选B.此题考查的是角平分线的定义、平行线的性质、等腰三角形的判定和三角形的内角和定理,掌握角平分线、平行线和等腰三角形三者之间的关系是解决此题的关键.3、B【分析】根据无理数的概念:无限不循环小数逐一判断即可得出答案.【详解】A.是有理数,不符合题意;B.是无理数,符合题意;C.是有理数,不符合题意;D.是有理数,不符合题意;故选:B.本题主要考查无理数,掌握无理数的概念及常见的类型是解题的关键.4、D【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=2,得出△A1B1A2的边长为2,再依次同理得出:△A2B2A3的边长为4,△A4B4A5的边长为:24=16,则△A5B5A6的边长为:25=1.【详解】解:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,A1B1=A1A2,
∵∠MON=30°,
∴∠OB1A1=60°-30°=30°,
∴∠MON=∠OB1A1,
∴B1A1=OA1=2,
∴△A1B1A2的边长为2,
同理得:∠OB2A2=30°,
∴OA2=A2B2=OA1+A1A2=2+2=4,
∴△A2B2A3的边长为4,
同理可得:△A3B3A4的边长为:23=8,
△A4B4A5的边长为:24=16,
则△A5B5A6的边长为:25=1,
故选:D.本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.5、B【分析】先根据三角形全等的判定定理证得,再根据三角形全等的性质、等腰三角形的性质可判断A、C选项,又由等腰三角形的性质、三角形的内角和定理可判断出D选项,从而可得出答案.【详解】,即在和中,,则A选项正确(等边对等角),则C选项正确,即又,即,则D选项正确虽然,但不能推出,则B选项错误故选:B.本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出是解题关键.6、C【解析】把各项中x与y的值代入方程检验即可.【详解】解:把x=1,y=5代入方程左边得:2+5=7,右边=7,∴左边=右边,则是方程2x+y=7的解.故选:C.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7、A【分析】根据一次函数的性质进行求解即可.【详解】∵∴∴y随着x的增大而减小∴,故选:A.本题主要考查了一次函数的性质,熟练掌握一次函数的增减性是解决本题的关键.8、D【分析】根据三角形的内角和求得一个角是90°或者根据勾股定理的逆定理进行判定即可.【详解】解:A、原式可化为,由勾股定理的逆定理可得是直角三角形;B、∵,设,,,则有,即,由勾股定理的逆定理可得是直角三角形;C、原式可化为,由可得,则是直角三角形;D、由,可得:,,,不是直角三角形;故选:D.本题考查了三角形的内角和、勾股定理的逆定理,解题的关键是找出满足直角三角形的条件:有一个角是90°,两边的平方和等于第三边的平方.9、C【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.【详解】当am=8,an=16时,,故选C.计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【详解】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<1.故选:C.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、A【分析】直接把点的坐标代入解析式得到a的一元一次方程,解方程即可.【详解】∵点在一次函数的图象上,∴3a+1=4解得,a=1,故选:A.本题主要考查一次函数图象上点的坐标特征,把点的坐标代入求解一元一次方程即可.12、C【分析】根据十字相乘法的分解方法和特点可知:的值应该是的两个因数的和,即即得m的所有可能值的个数.【详解】,的可能值为:故m的可能值为:共6个,故选:C.考查了十字相乘法分解因式,对常数项的不同分解是解本题的关键,注意所求结果是值的个数.二、填空题(每题4分,共24分)13、【分析】根据三角形的三边关系,两边之和大于第三边和两边之差小于第三边列出不等式组求出其解即可.【详解】解:由题意,得,
解得:,
故答案为.考查了根据三角形三边关系建立不等式组解实际问题的运用,不等式组的解法的运用,解答时根据三角形的三边关系建立不等式组是关键.14、3cm【分析】先根据勾股定理求出AB的长,设CD=xcm,则cm,再由图形翻折变换的性质可知AE=AC=6cm,DE=CD=xcm,进而可得出BE的长,在中利用勾股定理即可求出x的值,进而得出CD的长.【详解】是直角三角形,AC=6cm,BC=8cm,
cm,
是翻折而成,
,
设DE=CD=xcm,,
,
在中,,
即,
解得x=3.
故CD的长为3cm.本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.15、三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性故答案为:三角形具有稳定性.此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.16、15cm【详解】在△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,AE=BE,AD=BD,△ADC的周长为9cm,即AC+CD+AD=9,则△ABC的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题17、.【解析】将a+b=5、ab=3代入原式=,计算可得.【详解】当a+b=5、ab=3时,原式====.故答案为.本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.18、【分析】根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组的解.【详解】解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是故答案为:.此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.三、解答题(共78分)19、;【分析】根据分式的运算法则即可化简,再代入即可求解.【详解】===把代入原式=此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.20、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.21、(1)1;(1)m=﹣5,n=10;(3)a=﹣5,b=﹣3,该多项式分解因式为:x3﹣x1﹣5x﹣3=(x﹣3)(x+1)1【分析】(1)根据多项式乘法将等式右边展开有:x1+mx﹣15=(x﹣3)(x+n)=x1+(n﹣1)x﹣n,所以,根据等式两边对应项的系数相等可以求得m的值;(1)设x4+mx3+nx﹣16=A(x﹣1)(x﹣1)(A为整式),分别取x=1和x=1得关于m和n的二元一次方程组,求解即可;(3)设x3﹣x1+ax+b=(x+p)(x1+1x+1),将等式右边展开,比较系数,得关于p,a,b的三元一次方程组,解方程组,再进行因式分解即可.【详解】解:(1)由题设知:x1+mx﹣15=(x﹣3)(x+n)=x1+(n﹣3)x﹣3n,故m=n﹣3,﹣3n=﹣15,解得n=5,m=1.故答案为1;(1)设x4+mx3+nx﹣16=A(x﹣1)(x﹣1)(A为整式),分别令x=1和x=1得:,解得:,∴m=﹣5,n=10;(3)设x3﹣x1+ax+b=(x+p)(x1+1x+1),∵(x+p)(x1+1x+1)=x3+(1+p)x1+(1+1p)x+p,∴,解得:,∴多项式x3﹣x1+ax+b=x3﹣x1﹣5x﹣3,∴x3﹣x1﹣5x﹣3=(x﹣3)(x1+1x+1)=(x﹣3)(x+1)1,∴a=﹣5,b=﹣3,该多项式分解因式为:x3﹣x1﹣5x﹣3=(x﹣3)(x+1)1.本题考查了待定系数法在因式分解中的应用,读懂阅读材料中的分解方法,是解题的关键.22、(1)见解析;(2)34°【分析】(1)根据HL证明Rt△ABC≌Rt△BAD;(2)利用全等三角形的性质证明即可.【详解】解:(1)证明:∵,∴和都是直角三角形,在和中,,∴;(2)解:在中,∵,∴,由(1)可知,∴,∴,本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等.23、(1)OA=6,OB=3;(2)S=|6﹣t|(t≥0);(3)t=3或1.【分析】(1)根据算术平方根和绝对值的非负性质即可求得m、n的值,即可解题;(2)连接PB,t秒后,可求得OP=6﹣t,即可求得S的值;(3)作出图形,易证∠OBA=∠OPE,只要OP=OB,即可求证△EOP≌△AOB,分两种情形求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南郴州市汝城县事业单位公开招聘引进高层次和急需紧缺人才21人考前自测高频考点模拟试题参考答案详解
- 2025广西南宁马山县公安局第一次招聘警务辅助人员62人考前自测高频考点模拟试题有完整答案详解
- 2025年福州市长乐生态环境局招聘2人考前自测高频考点模拟试题及答案详解(典优)
- 浙江国企招聘2025年宁波富达股份有限公司招聘2人笔试历年参考题库附带答案详解
- 泸州市蜀润建材有限公司公开招聘笔试历年参考题库附带答案详解
- 2025重庆市汽车运输集团招聘60人笔试历年参考题库附带答案详解
- 2025安徽芜湖市鸠江区招聘区属国有企业领导人员拟聘用人员模拟试卷及答案详解(名校卷)
- 2025贵州黔东南州榕江县农业投资开发有限责任公司招聘拟聘用人员笔试历年参考题库附带答案详解
- 2025贵州省施秉县杉木河旅游开发有限公司招聘笔试历年参考题库附带答案详解
- 2025福建福州城投供应链集团社会招聘2人笔试历年参考题库附带答案详解
- 稳评从业人员培训考试及答案解析
- 2025年甘肃省兰州市榆中县招聘乡村医生考试参考试题及答案解析
- 燃气入户安检课件
- 预防静电安全知识培训课件
- 临时用电专项施工方案(老旧小区改造项目)
- 2025党校中青班入学考试试题及答案
- 2025年中国咖啡饮料行业市场深度分析及发展战略规划报告
- 小学生科普课件向日葵
- 铁路工务介入管理办法
- 25年一建建筑实务真题及答案
- 静电测试作业指导书
评论
0/150
提交评论