




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.3分层抽样[学习目标]1.理解分层抽样的概念.2.会用分层抽样从总体中抽取样本.3.了解三种抽样法的联系和区别.知识点一分层抽样的概念一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施样抽,这种抽样方法叫分层抽样,所分成的各个部分称为“层”.分层抽样具有如下特点:(1)适用于总体由差异明显的几部分组成的情况;(2)按比例确定每层抽取个体的个数;(3)在每一层进行抽样时,采用简单随机抽样或系统抽样的方法;(4)分层抽样能充分利用已掌握的信息,使样本具有良好的代表性;(5)分层抽样也是等机会抽样,每个个体被抽到的可能性都是eq\f(样本容量n,总体容量N),而且在每层抽样时,可以根据个体情况采用不同的抽样方法知识点二分层抽样的步骤分层抽样的步骤是:(1)将总体按一定标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样).知识点三三种抽样方法的比较简单随机抽样、系统抽样、分层抽样的比较如下表所示:类别共同点各自特点相互联系适用范围简单随机抽样(1)抽样过程中每个个体被抽到的可能性相等;(2)每次抽出个体后不再将它放回,即不放回抽样从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按预先确定的规则分别在各部分抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,在各层中按同一抽样比抽取在各层抽样时,采用简单随机抽样或系统抽样总体由差异明显的几部分组成[思考]分层抽样的总体具有什么特性?答分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.题型一对分层抽样概念的理解例1有40件产品,其中一等品10件,二等品25件,次品5件.现从中抽出8件进行质量分析,则应采取的抽样方法是________.答案分层抽样解析总体是由差异明显的几部分组成,符合分层抽样的特点,故采用分层抽样.反思与感悟判断抽样方法是分层抽样,主要是依据分层抽样的特点:(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.跟踪训练1在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个.方法2:采用系统抽样的方法,将所有零件分为20组,每组5个,然后从每组中随机抽取1个.方法3:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是________.①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是eq\f(1,5);②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;③在上述三种抽样方法中,方法3抽到的样本比方法1和方法2抽到的样本更能反映总体特征;④在上述抽样方法中,方法2抽到的样本比方法1和方法3抽到的样本更能反映总体的特征.答案①③解析根据三种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是eq\f(n,N),故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故方法③抽到的样本更有代表性,③正确,④错误.故①③正确.题型二分层抽样的应用例2一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解用分层抽样来抽取样本,步骤如下:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为eq\f(100,500)=eq\f(1,5),则在不到35岁的职工中抽取125×eq\f(1,5)=25(人);在35岁至49岁的职工中抽取280×eq\f(1,5)=56(人);在50岁及50岁以上的职工中抽取95×eq\f(1,5)=19(人).(3)在各层分别按系统抽样或随机数表法抽取样本.(4)汇总每层抽样,组成样本.反思与感悟利用分层抽样抽取样本的操作步骤:(1)将总体按一定标准进行分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层的个体数占总体的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样);(5)最后将每一层抽取的样本汇总合成样本.跟踪训练2一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是________.答案8,16,10,6解析抽样比为eq\f(40,800)=eq\f(1,20),故各层抽取的人数依次为160×eq\f(1,20)=8,320×eq\f(1,20)=16,200×eq\f(1,20)=10,120×eq\f(1,20)=6.题型三抽样方法的综合应用例3为了考察某校的教学水平,抽查了这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察这14名学生的成绩;③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方法各自抽取样本的步骤.解(1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步:在这14个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为x;第二步:在其余的13个班中,选取学号为x+50k(1≤k≤13,k∈Z)的学生,共计14人.第三种方式抽样的步骤如下:第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每层抽取的个体数依次为eq\f(105,7),eq\f(420,7),eq\f(175,7),即15,60,25;第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.第四步:将所抽取的个体组合在一起构成样本.反思与感悟(1)简单随机抽样、系统抽样和分层抽样是三种常用的抽样方法,在实际生活中有着广泛的应用.(2)三种抽样的适用范围不同,各自的特点也不同,但各种方法间又有密切联系.在应用时要根据实际情况选取合适的方法.(3)三种抽样中每个个体被抽到的可能性都是相同的.跟踪训练3下列问题中,宜采用的抽样方法依次为:(1)________;(2)________;(3)________;(4)________.(1)从10台电冰箱中抽取3台进行质量检查;(2)某社区有1200户家庭,其中高收入家庭420户,中等收入家庭470户,低收入家庭310户,为了调查该社区购买力的某项指标,要从所有家庭中抽取一个容量为120的样本;(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;(4)已知某校高一学生的学号后三位数字从001编至805,教育部门准备抽查该校80名高一学生的体育达标情况.答案抽签法分层抽样分层抽样系统抽样解析题号判断原因分析(1)抽签法总体容量较小,宜采用抽签法(2)分层抽样社区中家庭收入层次明显,宜采用分层抽样(3)分层抽样由于学校各类人员对这一问题的看法可能差异较大,故宜采用分层抽样(4)系统抽样总体容量较大,样本容量也较大,可以随机剔除5个个体后等距抽取,宜采用系统抽样正确应用系统抽样例4某机关老年、中年、青年的人数分别为18,12,6,现从中抽取一个容量为n的样本,若采用系统抽样和分层抽样,则不用剔除个体.当样本容量增加1时,若采用系统抽样,需在总体中剔除1个个体,则样本容量n=________.分析首先由题目的已知条件确定n的所有可能取值,然后分别进行验证.解析当样本容量为n时,因为采用系统抽样时不用剔除个体,所以n是18+12+6=36的约数,n可能为1,2,3,4,6,9,12,18,36.因为采用分层抽样时不用剔除个体,所以eq\f(n,36)×18=eq\f(n,2),eq\f(n,36)×12=eq\f(n,3),eq\f(n,36)×6=eq\f(n,6)均是整数,所以n可能为6,12,18,36.又因为当样本容量增加1时,需要剔除1个个体,才能用系统抽样,所以n+1是35的约数,而n+1可能为7,13,19,37,所以n+1=7,所以n=6.答案6解后反思由题目的已知条件不能直接列式求解时,可以根据题意先确定所求解的大致范围,再对此范围内的值逐一验证即可.1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是________.答案分层抽样解析从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层抽样.2.为了保证分层抽样时,每个个体等可能地被抽取,必须要求________.①每层的个体数必须一样多;②每层抽取的个体数相等;③每层抽取的个体可以不一样多,但必须满足抽取ni=n·eq\f(Ni,N)(i=1,2,…,k)个个体,其中k是层数,n是抽取的样本容量,Ni是第i层所包含的个体数,N是总体容量;④只要抽取的样本容量一定,每层抽取的个体数没有限制.答案③解析所给项正误理由①×每层的个体数不一定都一样多②×由于每层的容量不一定相等,每层抽同样多的个体,从整个总体来看,各层之间的个体被抽取的可能性显然就不一样了③√对于第i层的每个个体,它被抽到的可能性与层数i无关,即对于每个个体来说,被抽入样本的可能性是相同的④×每层抽取的个体数是有限制的3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生________.答案30人,45人,15人解析先求抽样比eq\f(n,N)=eq\f(90,3600+5400+1800)=eq\f(1,120),再各层按抽样比分别抽取,甲校抽取3600×eq\f(1,120)=30(人),乙校抽取5400×eq\f(1,120)=45(人),丙校抽取1800×eq\f(1,120)=15(人).4.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是________.答案9,7解析抽样比为eq\f(16,54+42)=eq\f(1,6),则一班和二班分别被抽取的人数是54×eq\f(1,6)=9,42×eq\f(1,6)=7.5.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取_____
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽安科生物工程(集团)股份有限公司招聘模拟试卷及答案详解(名师系列)
- 2025湖南省农村信用社联合社校园招聘15人考前自测高频考点模拟试题及参考答案详解1套
- 2025河北邯郸市体育运动学校选聘体育教练员3人考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年三环集团社会招聘模拟试卷完整参考答案详解
- 2025年国家统计局平顶山调查队面向社会公开招聘劳务派遣人员4名模拟试卷及答案详解(名校卷)
- 2025年德州平原县县属国有企业公开招聘工作人员模拟试卷及答案详解参考
- 2025贵州医科大学第二附属医院第十三届贵州人才博览会引才47人模拟试卷及答案详解(新)
- 2025贵州省民族研究院第十三届贵州人才博览会引进人才模拟试卷及答案详解(新)
- 2025年陕西中试电力科技有限公司招聘(3人)考前自测高频考点模拟试题及1套参考答案详解
- 2025春季内蒙古包头市中心医院引进高层次和紧缺急需人才招聘29人考前自测高频考点模拟试题及答案详解(名校卷)
- 金融科技驱动的支付行业数字化转型路径-洞察阐释
- 个人借款分期还款协议范本8篇
- 劳动争议再审申请书
- 朝花夕拾中父亲的病
- 2024年微信小程序建设协议样本
- 江苏省南京市联合体2024~2025学年上学期八年级物理期中试卷(含答案)
- 2024年全国巾帼家政服务职业技能大赛(收纳师)理论考试题库(含答案)
- 部编版四年级语文上册第六单元教学分析及全部备课教案(共6份教案)
- 全国学科专业目录及名称代码表
- 项目安全管理考核表
- 食品生产企业安全检查表含日管控、周排查及月调度检查记录表
评论
0/150
提交评论