江苏省无锡市南长实验、侨谊教育集团2026届中考数学全真模拟试题含解析_第1页
江苏省无锡市南长实验、侨谊教育集团2026届中考数学全真模拟试题含解析_第2页
江苏省无锡市南长实验、侨谊教育集团2026届中考数学全真模拟试题含解析_第3页
江苏省无锡市南长实验、侨谊教育集团2026届中考数学全真模拟试题含解析_第4页
江苏省无锡市南长实验、侨谊教育集团2026届中考数学全真模拟试题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市南长实验、侨谊教育集团2026届中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图的几何体中,主视图是中心对称图形的是()A. B. C. D.2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A.3,2.5 B.1,2 C.3,3 D.2,23.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时 D.36.36×105立方米/时4.已知点,为是反比例函数上一点,当时,m的取值范围是()A. B. C. D.5.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,306.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<17.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣18.若分式有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1 D.x≠09.二次函数y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.910.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y311.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着 B.沉 C.应 D.冷12.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形 D.△BEF是等腰三角形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:的内切圆.小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D;

点O为圆心,OD长为半径作所以,即为所求作的圆.请回答:该尺规作图的依据是______.15.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.17.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.18.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.34.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.20.(6分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?21.(6分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.(1)①已知O为坐标原点,点,,则_________,_________;②点C在直线上,求出的最小值;(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.22.(8分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.(8分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.(1)由题意易知,,观察图,请猜想另外两组全等的三角形;;(2)求证:四边形是平行四边形;(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.24.(10分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;①连接PO,交AC于点E,求的最大值;②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.26.(12分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.27.(12分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】解:球是主视图是圆,圆是中心对称图形,故选C.2、D【解析】试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.所以本题这组数据的中位数是1,众数是1.故选D.考点:1.众数;1.中位数.3、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1010×360×24=3.636×106立方米/时,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、A【解析】

直接把n的值代入求出m的取值范围.【详解】解:∵点P(m,n),为是反比例函数y=-图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.5、C【解析】

根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.6、D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.综上所述:m<n,所求x0的取值范围0<x0<1.故选D.点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.7、A【解析】根据题意可知x=-1,

平均数=(-6-1-1-1+2+1)÷6=-1,

∵数据-1出现两次最多,

∴众数为-1,

极差=1-(-6)=2,

方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.

故选A.8、C【解析】

分式分母不为0,所以,解得.故选:C.9、D【解析】

直接利用配方法得出二次函数的顶点式进而得出答案.【详解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函数y=﹣x2﹣4x+5的最大值是9,故选D.【点睛】此题主要考查了二次函数的最值,正确配方是解题关键.10、A【解析】

作出反比例函数的图象(如图),即可作出判断:∵-3<1,∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.11、A【解析】

正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键12、D【解析】

连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.【详解】连接BD,∵四边形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等边三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正确;

∵∠EDF=60°,

∴△EDF是等边三角形,

∴C正确;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正确.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D错误.

故选D.【点睛】本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.14、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】

根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.15、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.16、1【解析】

试题分析:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.17、直角三角形.【解析】

根据题意,画出图形,用垂直平分线的性质解答.【详解】点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴∠C是直角.∴这个三角形是直角三角形.【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.18、圆【解析】

根据题意作图,即可得到点F的运动轨迹.【详解】如图,根据题意作下图,可知F的运动轨迹为圆⊙O’.【点睛】此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(1)3.5;(3)见解析;(4)3.1【解析】

根据题意作图测量即可.【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.20、(1)50(2)36%(3)160【解析】

(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对名学生进行了抽样调查.本次调查中,最喜欢篮球活动的有人,,∴最喜欢篮球活动的人数占被调查人数的.(3),人,人.答:估计全校学生中最喜欢跳绳活动的人数约为人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21、(1)①3,1;②最小值为3;(1)【解析】

(1)①根据点Q与点P之间的“直距”的定义计算即可;②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;【详解】解:(1)①如图1中,观察图象可知DAO=1+1=3,DBO=1,故答案为3,1.②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;(ii)当点C在坐标轴上时(,),易得为3;(ⅲ)当点C在第二象限时(),可得;(ⅳ)当点C在第四象限时(),可得;综上所述,当时,取得最小值为3;(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.【点睛】本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.失分原因第(1)问(1)不能根据定义找出AO、BO的“直距”分属哪种情形;(1)不能找出点C在不同位置时,的取值情况,并找到的最小值第(1)问(1)不能根据定义正确找出点E与点F之间“直距”取最小值时点E、F的位置;(1)不能想到由相似求出GO的值22、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m<4时,P(2,1);类似地可求出当m>4时,P(5,﹣2);当m<1时,P(﹣3,﹣14),综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.23、(1);(2)见解析;(3)存在,2【解析】

(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案.【详解】解:(1)四边形是正方形,,,,,,在和中,在和中,,故答案为;(2)证明:由(1)可知,,四边形是平行四边形.(3)解:存在,理由如下:是等腰直角三角形,最短时,的面积最小,当时,最短,此时,的面积最小为.【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.24、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.【详解】(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得,抛物线的解析是为;

(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,∵直线PN∥y轴,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,设点P(x,-x2+x+2),则点M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴当x=2时,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情况二,∴∠FPC=2∠BAC,∴tan∠FPC=,设FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),综上所述:P点坐标是(2,3)或(,).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.25、(1)证明见解析;(2)阴影部分的面积为.【解析】

(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.26、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论