四川省广安岳池县联考2026届中考试题猜想数学试卷含解析_第1页
四川省广安岳池县联考2026届中考试题猜想数学试卷含解析_第2页
四川省广安岳池县联考2026届中考试题猜想数学试卷含解析_第3页
四川省广安岳池县联考2026届中考试题猜想数学试卷含解析_第4页
四川省广安岳池县联考2026届中考试题猜想数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安岳池县联考2026届中考试题猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18 B.16 C.32.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.80703.如图图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车在行驶过程中进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等5.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.846.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为()米.A.25 B. C. D.7.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A. B. C. D.8.如图,AB∥CD,那么()A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补9.下图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.关于的方程有增根,则______.12.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.13.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为.15.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,=0.02;机床乙:=10,=0.06,由此可知:________(填甲或乙)机床性能好.16.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.17.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.三、解答题(共7小题,满分69分)18.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.19.(5分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.20.(8分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.21.(10分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.22.(10分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).23.(12分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?24.(14分)解不等式组,并把它的解集表示在数轴上.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212故选B.2、A【解析】

观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.3、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.4、B【解析】

①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A错误,轿车在行驶过程中进行了提速,故选项B正确,货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,设货车对应的函数解析式为y=kx,5k=300,得k=60,即货车对应的函数解析式为y=60x,设CD段轿车对应的函数解析式为y=ax+b,,得,即CD段轿车对应的函数解析式为y=110x-195,令60x=110x-195,得x=3.9,即货车出发3.9小时后,轿车追上货车,故选项C错误,故选:B.【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式5、B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理全面积为:故该几何体的全面积等于1.故选B.6、B【解析】

解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,则,解得即小岛B到公路l的距离为,故选B.7、A【解析】

根据锐角三角函数的定义求出即可.【详解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.8、C【解析】

分清截线和被截线,根据平行线的性质进行解答即可.【详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9、D【解析】

主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.10、D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x千米,根据题意可列方程为:.故选D.点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.12、1.57×1【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1570000用科学记数法表示为1.57×1.故答案为1.57×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、85【解析】

根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.14、1或.【解析】

当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

设BE=x,则EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=1.

综上所述,BE的长为或1.

故答案为:或1.15、甲.【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故答案为甲.考点:1.方差;2.算术平均数.16、-1【解析】

根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.17、-1【解析】

根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.三、解答题(共7小题,满分69分)18、(1)(2).【解析】

(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.19、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】

(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;(2)分当B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD•PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.【详解】(1)解:(1)连接BC,∵AB是直径,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂线,∴CP=CB=CA,(3)①(Ⅰ)如图2,当B在PA的中垂线上,且P在右时,∠ACD=15°;(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°②(Ⅰ)如图6,,.(Ⅱ)如图7,,,.,.,,,.设BD=9k,PD=2k,,,,.【点睛】本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.20、(1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到•2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.【详解】解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)设P(t,﹣t2+4t﹣3),因为S△PAB=1,AB=3﹣1=2,所以•2•|﹣t2+4t﹣3|=1,当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.21、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解析】

设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据题意得:﹣=3,解得:x1=161,x2=﹣264(不合题意,舍去),经检验,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.22、(1)60;(2)【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论