




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()A.25° B.80° C.130° D.100°2、平面直角坐标系中点关于原点对称的点的坐标是()A. B. C. D.3、如图是下列哪个立体图形的主视图()A. B.C. D.4、如图,该几何体的左视图是()A. B. C. D.5、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是()A. B. C. D.6、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()A. B. C.5 D.57、下列判断正确的是()A.明天太阳从东方升起是随机事件;B.购买一张彩票中奖是必然事件;C.掷一枚骰子,向上一面的点数是6是不可能事件;D.任意画一个三角形,其内角和是360°是不可能事件;8、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.2、到点的距离等于8厘米的点的轨迹是__.3、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.4、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.5、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.6、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为_______.7、有五张正面分别标有数字,,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为,则为非负数的概率为________.三、解答题(7小题,每小题0分,共计0分)1、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动.①当,时,则___________°;②猜想线段CA,CF与CE之间的数量关系为____________.(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.2、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.(1)如图1,当、、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.3、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.4、如图,已知为的直径,切于点C,交的延长线于点D,且.(1)求的大小;(2)若,求的长.5、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.6、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.7、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.-参考答案-一、单选题1、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.2、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.3、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.5、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可.【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,∴点数大于2且小于5的有3或4,∴向上一面的点数大于2且小于5的概率是=,故选:C.【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键.6、C【分析】先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PA,PB为⊙O的切线,∴PA=PB,∵∠APB=60°,∴△APB为等边三角形,∴AB=PA=5.故选:C.【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.7、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360°是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.二、填空题1、【分析】如图,连接AD,PA,PD,OD.首先证明PA=PB,再根据PD+PB=PD+PA≥AD,求出AD即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值为2,故答案为:2.【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.2、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答.【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.故答案为:以点为圆心,8厘米长为半径的圆.【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.3、【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.【详解】解:如图所示:当点P到如图位置时,的面积最大,∵、,∴圆的直径,半径为1,∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,∵PD切于点D,∴,∴,设点,在中,,,∴,在中,,∴,则,当时,PD取得最小值,最小值为,故答案为:①;②.【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.4、2【分析】根据扇形的面积公式S=,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r为=2,弧长l为2,这个扇形的面积为:==2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.5、【分析】根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率【详解】解:二次函数的对称轴在轴左侧对称轴为,即同号,列表如下共有12种等可能结果,其中同号的结果有4种则二次函数的对称轴在轴左侧的概率为故答案为:【点睛】本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键.6、0.880【分析】大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.【详解】解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,从上表可以看出,频率成活的频率,即稳定于0.880左右,∴估计这种幼树移植成活率的概率约为0.88.故答案为:0.880.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.7、【分析】求出为负数的事件个数,进而得出为非负数的事件个数,然后求解即可.【详解】解:两次取卡片共有种可能的事件;两次取得卡片数字乘积为负数的事件为等8种可能的事件∴为非负数共有种∴为非负数的概率为故答案为:.【点睛】本题考查了列举法求随机事件的概率.解题的关键在于求出事件的个数.三、解答题1、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性质可得出答案;②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;(1)①∵,,,∴,∵sin∠EAB=∴,故答案为:30°;②.如图1,过点E作交CA的延长线于M,∵,,∴,∴,∴,∴,∵将线段AE绕点E顺时针旋转90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵为等腰直角三角形,∴,∴;故答案为:;(2)不成立.如图2,过点F作交BC的延长线于点H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴为等腰直角三角形,∴.又∵,即.【点睛】本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.2、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120°,得到,是等边三角形,,在中,,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120°,得到,是等边三角形,,是等边三角形设,则,,,是等边三角形,即(3)如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120°,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.3、(1)3种可能,分别是“微信”“QQ”,“电话”(2)【分析】(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解.(1)解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.(2)解:画出树状图,如图所示所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况,故两人恰好选中同一种沟通方式的概率为.【点睛】本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.4、(1)45°(2)【分析】(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.(1)连接.∵,∴,即.∵,∴.∵是⊙的切线,∴,即.∴.∴.∴.(2)∵,,∴.∵,∴.∴的长.【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.5、(1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)∵==8=,∴AD•OF=8,∴OF=4,又∵点F在y轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 订合同公证保全协议书
- 租车调车合同协议模板
- 综合岗位聘用合同范本
- 瓷砖库房转让合同范本
- 采购悬浮地板合同范本
- 租赁音响设备合同范本
- 门面租凭合同终止协议
- 软件系统合同协议模板
- 过户手写协议合同模板
- 软件项目意向合同范本
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
- 商务礼仪情景剧剧本范文(通用5篇)
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
- 某县干部周转宿舍工程可行性研究报告
评论
0/150
提交评论