版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年天津市中考数学真题本试卷分为第I卷(选择题)、第II卷(非选择题)两部分.第I卷为第1页至第3页,第II卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第I卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A. B.3 C. D.2.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.3.估计的值在()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.据年月日《天津日报》报道,今年“五一”小长假,全市跨区域人员流动量达到人次.将数据用科学记数法表示应为()A B. C. D.6.的值等于()A.0 B.1 C. D.7.若点都在反比例函数的图象上,则,的大小关系是()A. B. C. D.8.《算学启蒙》是我国古代的数学著作,其中有一道题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马天可以追上慢马,则可以列出的方程为()A. B.C. D.9.计算的结果等于()A. B. C. D.110.如图,是的角平分线.按以下步骤作图:①以点为圆心,适当长为半径画弧,与边相交于点,与边相交于点;②以点为圆心,长为半径画弧,与边相交于点;③以点为圆心,长为半径画弧,与第②步中所画的弧相交于点;④作射线,与相交于点,与边相交于点.则下列结论一定正确的是()A B. C. D.11.如图,在中,,将绕点顺时针旋转得到,点B,C的对应点分别为的延长线与边相交于点,连接.若,则线段的长为()A. B. C.4 D.12.四边形中,,.动点从点出发,以的速度沿边、边向终点运动;动点从点同时出发,以的速度沿边向终点运动.规定其中一个动点到达终点时,另一个动点也随之停止运动.设运动的时间为.当时,点M,N的位置如图所示.有下列结论:①当时,;②当时,的最大面积为;③有两个不同的值满足的面积为.其中,正确结论的个数是()A.0 B.1 C.2 D.3第II卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有13个球,其中有3个红球、4个黄球、6个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为____________.14.计算的结果为____________.15.计算的结果为____________.16.将直线向上平移个单位长度,若平移后的直线经过第三、第二、第一象限,则的值可以是____________(写出一个即可).17.如图,在矩形中,,,点在边上,且.(1)线段的长为____________;(2)为的中点,为的中点,为上一点,若,则线段的长为____________.18.如图,在每个小正方形边长为1的网格中,点P,A均在格点上.(1)线段的长为____________;(2)直线与的外接圆相切于点.点在射线上,点在线段的延长线上,满足,且与射线垂直.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)____________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得____________;(2)解不等式②,得____________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为____________.20.为了解某校学生每月参加志愿服务的时间(单位:h),随机调查了该校名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:的值为____________,图①中的值为____________,统计的这组学生每月参加志愿服务的时间数据的众数和中位数分别为____________和____________;(2)求统计的这组学生每月参加志愿服务的时间数据的平均数;(3)根据样本数据,若该校共有1000名学生,估计该校学生每月参加志愿服务的时间是4h的人数约为多少?21.已知与相切于点与相交于点D,E为上一点.(1)如图①,求的大小;(2)如图②,当时,与相交于点,延长与相交于点,若的半径为3,求和的长.22.综合与实践活动中,要用测角仪测量天津站附近世纪钟建筑的高度(如图①).某学习小组设计了一个方案:如图②所示,点,,依次在同一条水平直线上,,,且.在处测得世纪钟建筑顶部的仰角为,在处测得世纪钟建筑顶部的仰角为,.根据该学习小组测得的数据,计算世纪钟建筑的高度(结果取整数).参考数据:,.23.已知小华的家、书店、公园依次在同一条直线上,书店离家,公园离家.小华从家出发,先匀速步行了到书店,在书店停留了,之后匀速步行了到公园,在公园停留后,再用匀速跑步返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中小华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:小华离开家的时间161850小华离家的距离
②填空:小华从公园返回家的速度为____________;③当时,请直接写出小华离家距离关于时间的函数解析式;(2)若小华的妈妈与小华同时从家出发,小华的妈妈以的速度散步直接到公园.在从家到公园的过程中,对于同一个的值,小华离家的距离为,小华的妈妈离家的距离为,当时,求的取值范围(直接写出结果即可).24.在平面直角坐标系中,为原点,等边的顶点,点在第一象限,等边的顶点,顶点在第二象限.(1)填空:如图①,点坐标为____________,点的坐标为____________;(2)将等边沿水平方向向右平移,得到等边,点的对应点分别为.设.①如图②,若边与边相交于点,当与重叠部分为四边形时,试用含有的式子表示线段的长,并直接写出的取值范围;②设平移后重叠部分的面积为,当时,求的取值范围(直接写出结果即可).25.已知抛物线为常数,.(1)当时,求该抛物线顶点的坐标;(2)点和点为抛物线与轴的两个交点,点为抛物线与轴的交点.①当时,若点在抛物线上,,求点的坐标;②若点,以为边的的顶点在抛物线的对称轴上,当取得最小值为时,求顶点的坐标.2025年天津市中考数学真题本试卷分为第I卷(选择题)、第II卷(非选择题)两部分.第I卷为第1页至第3页,第II卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第I卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A. B.3 C. D.【答案】B【解析】【分析】本题考查有理数的除法运算,利用除法的运算法则进行计算即可.【详解】解:;故选B.2.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】D【解析】【分析】本题主要查了简单组合体的三视图.根据从前面看到的图形是主视图,即可求解.【详解】解:根据题意得:它的主视图是故选:D3.估计的值在()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间【答案】C【解析】【分析】本题考查无理数的估算,夹逼法求出无理数的范围,进行判断即可.【详解】解:∵,∴,∴,∴的值在3和4之间;故选C.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】本题主要查了轴对称图形.根据轴对称图形得定义,逐项判断,即可求解.【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B5.据年月日《天津日报》报道,今年“五一”小长假,全市跨区域人员流动量达到人次.将数据用科学记数法表示应为()A. B. C. D.【答案】B【解析】【分析】本题考查科学记数法,解题的关键是熟记科学记数法的定义:将一个数表示成的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值大于或等于时,是正整数;当原数的绝对值小于时,是负整数.【详解】解:将数据用科学记数法表示应为.故选:B.6.的值等于()A.0 B.1 C. D.【答案】A【解析】【分析】本题考查特殊角的三角函数值的计算,代入各特殊角的三角函数值后按运算顺序计算,即可求解.【详解】解:故选:A.7.若点都在反比例函数的图象上,则,的大小关系是()A. B. C. D.【答案】D【解析】【分析】本题考查比较反比例函数的函数值的大小关系,根据反比例函数的增减性,进行判断即可.【详解】解:∵,∴反比例函数的图象过二,四象限,在每一个象限内,随着的增大而增大,∵点都在反比例函数的图象上,且,∴;故选D.8.《算学启蒙》是我国古代的数学著作,其中有一道题:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马天可以追上慢马,则可以列出的方程为()A. B.C. D.【答案】A【解析】【分析】本题考查一元一次方程的应用,属于行程问题中的追及问题.解题的关键是找到两马路程相等的等量关系.设快马用天追上慢马,快马的总路程为里,慢马的总路程为里,根据题意,列出方程即可.【详解】解:设快马用天追上慢马,快马的总路程为里,慢马的总路程为里,根据题意得:.故选:A9.计算的结果等于()A. B. C. D.1【答案】A【解析】【分析】本题考查分式的加法运算,先通分化为同分母,再进行计算,最后约分化简即可.【详解】解:原式;故选A.10.如图,是的角平分线.按以下步骤作图:①以点为圆心,适当长为半径画弧,与边相交于点,与边相交于点;②以点为圆心,长为半径画弧,与边相交于点;③以点为圆心,长为半径画弧,与第②步中所画的弧相交于点;④作射线,与相交于点,与边相交于点.则下列结论一定正确的是()A. B. C. D.【答案】D【解析】【分析】本题主要查了尺规作图,等腰三角形的判定,三角形外角的性质.由作法可得:,再结合三角形外角的性质,等腰三角形的判定解答,即可.【详解】解:由作法得:,根据题意无法得到与的大小关系,所以无法确定与的大小关系,故A选项错误;∵是的角平分线,∴,∵,∴,∴,故D选项正确;题干中没有说明的大小关系,∴无法判断的大小关系,则无法得到的度数,故B选项错误;根据题意无法得到的大小关系,故C选项错误;故选:D11.如图,在中,,将绕点顺时针旋转得到,点B,C的对应点分别为的延长线与边相交于点,连接.若,则线段的长为()A. B. C.4 D.【答案】D【解析】【分析】本题考查了三角形全等的判定与性质、线段垂直平分线的判定、旋转的性质、勾股定理等知识,熟练掌握旋转的性质是解题关键.连接,交于点,先证出,根据全等三角形的性质可得,再证出垂直平分,则可得,,然后利用勾股定理和三角形的面积公式求出的长,由此即可得.【详解】解:如图,连接,交于点,由旋转的性质得:,,∴,在和中,,∴,∴,∴垂直平分,∴,,∵,,∴,又∵,∴,∴,故选:D.12.四边形中,,.动点从点出发,以的速度沿边、边向终点运动;动点从点同时出发,以的速度沿边向终点运动.规定其中一个动点到达终点时,另一个动点也随之停止运动.设运动的时间为.当时,点M,N的位置如图所示.有下列结论:①当时,;②当时,的最大面积为;③有两个不同的值满足的面积为.其中,正确结论的个数是()A.0 B.1 C.2 D.3【答案】C【解析】【分析】本题主要查了二次函数的性质,一元二次方程的应用.当时,点M在上,求出,可判断①;当时,点M在上,利用三角形面积公式求出的面积,利用二次函数的性质,可判断②;分两种情况:当点M在上时,点M在上,结合的面积为,列出方程,可判断③.【详解】解:根据题意得:点M在上的运动时间为,点M在上的运动时间为,点N在上的运动时间为,①当时,点M在上,此时,,∴,∴,故①正确;②当时,点M在上,此时,,∴,∴,∵,∴当时,随t的增大而增大,∴当时,取得最大值,最大值为,即当时,的最大面积为,故②错误;③当点M在上时,∵的面积为,∴,解得:(舍去),∴当时,的面积为;当点M在上时,∵,,∴,即,此时,解得:,∴当时,的面积为;∴有两个不同的值满足的面积为,故③正确.故选:C第II卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有13个球,其中有3个红球、4个黄球、6个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为____________.【答案】【解析】【分析】本题考查了概率公式,用到的知识点为:概率所求情况数与总情况数之比,解题的关键是掌握概率公式.用绿球的个数除以总球的个数即可得出答案.【详解】解:袋子中绿球的个数为6,球的总数为13,所以抽到绿球的概率为,故答案为:.14.计算的结果为____________.【答案】【解析】【分析】本题考查合并同类项,根据合并同类项的法则,进行计算即可.【详解】解:;故答案为:.15.计算的结果为____________.【答案】60【解析】【分析】本题主要考查了利用平方差公式进行二次根式的运算,解题的关键是熟练掌握平方差公式.利用平方差公式进行计算即可.【详解】解:,故答案为:60.16.将直线向上平移个单位长度,若平移后的直线经过第三、第二、第一象限,则的值可以是____________(写出一个即可).【答案】2(答案不唯一,满足即可)【解析】【分析】本题考查一次函数图象的平移,根据直线经过的象限,求参数的范围,根据平移规则求出新的解析式,根据图象经过第三、第二、第一象限,得到,进行求解即可.【详解】解:由题意,平移后的解析式为:,∵平移后的直线经过第三、第二、第一象限,∴,∴;∴的值可以是2;故答案为:2(答案不唯一,满足即可)17.如图,在矩形中,,,点在边上,且.(1)线段的长为____________;(2)为的中点,为的中点,为上一点,若,则线段的长为____________.【答案】①.②.【解析】【分析】本题主要考查了矩形的性质,勾股定理,解直角三角形,全等三角形的性质与判定等等,熟知矩形的性质与勾股定理是解题的关键.(1)求出,再利用勾股定理即可求出答案;(2)过点M作于H,由矩形的性质得到,,证明,得到,,则可证明,可得,则;由勾股定理得,则,解直角三角形求出的长,进而可求出的长.【详解】解:(1)∵,,∴,∴,∵四边形是矩形,∴,∴,故答案为:;(2)如图所示,过点M作于H,∵四边形是矩形,∴,,∵为的中点,∴,∴,又∵,∴,∴,,∴,∴,∴,∴;在中,由勾股定理得,∵为的中点,∴,∴,∴,故答案为:.18.如图,在每个小正方形边长为1的网格中,点P,A均在格点上.(1)线段的长为____________;(2)直线与的外接圆相切于点.点在射线上,点在线段的延长线上,满足,且与射线垂直.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)____________.【答案】①.②.见解析【解析】【分析】本题主要考查了勾股定理,圆周角定理的推论,等腰三角形的性质,正方形的性质,三角形中位线的判定和性质,相似三角形的判定和性质等内容,解题的关键是熟练掌握以上性质,并灵活应用.(1)利用勾股定理进行求解即可;(2)利用圆周角定理的推论,正方形的性质确定圆心,再根据全等三角形和等腰三角形的三线合一确定线段的中点,利用网格确定点为线段的中点,则为三角形的中位线,利用一组平行线确定点为线段的中点,证明和,得出,即,最后利用切线的性质和等腰三角形的性质,得出为等腰三角形,再利用等腰三角形的性质得出.详解】解:(1)由勾股定理得,故答案为:;(2)如图所示,点即为所求,作法:直线PA与射线BC的交点为;取圆与网格线的交点和,连接;取格点,连接,与相交于点;连接并延长,与相交于点,与直线相交于点;连接并延长,与网格线相交于点,连接,与网格线相交于点;连接,与线段的延长线相交于点,则点M,N即为所求.理由:∵,∴为圆的直径,∵为正方形的对角线,∴∴垂直平分线段,∴点为圆的圆心,∴,又,,,平分,∴点为线段的中点,由网格可知点为线段的中点,∴为的中位线,∴,∴点为线段的中点,∵,,,∴,又,∴,,即,延长交于点,∵,∴,,∴∵为圆的切线,∴,,,∴,即,∵,,∴为等腰三角形,根据三线合一,∴,∴点即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得____________;(2)解不等式②,得____________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为____________.【答案】(1)(2)(3)作图见解析(4)【解析】【分析】本题考查解一元一次不等式组,在数轴上表示不等式的解集,(1)根据移项,合并同类项即可得解;(2)根据移项,合并同类项即可得解;(3)根据不等式的解集在数轴上表示的方法:“”空心圆点向右画折线,“”实心圆点向右画折线,“”空心圆点向左画折线,“”实心圆点向左画折线,据此画出图形;(4)根据一元一次不等式组的解集确定的原则:同大取大;同小取小;大小小大中间找;大大小小找不到,据此确定不等式组的解集;解题的关键是掌握:①不等式的解集在数轴上表示的方法;②一元一次不等式组的解集确定的原则.【小问1详解】解:移项,得:,合并同类项,得:,∴解不等式①,得:,故答案为:;【小问2详解】移项,得:,合并同类项,得:,∴解不等式②,得:,故答案为:;【小问3详解】把不等式①和②的解集在数轴上表示出来如图所示:【小问4详解】原不等式组的解集为:,故答案为:.20.为了解某校学生每月参加志愿服务的时间(单位:h),随机调查了该校名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:的值为____________,图①中的值为____________,统计的这组学生每月参加志愿服务的时间数据的众数和中位数分别为____________和____________;(2)求统计的这组学生每月参加志愿服务的时间数据的平均数;(3)根据样本数据,若该校共有1000名学生,估计该校学生每月参加志愿服务的时间是4h的人数约为多少?【答案】(1)40,25,4,3(2)这组数据的平均数是(3)估计该校学生每月参加志愿服务的时间是4h的人数约为350【解析】【分析】本题主要考查了扇形统计图和条形统计图的结合,求总数,部分的百分比,众数,中位数,加权平均数,利用样本频数预估总体频数等内容,解题的关键是熟练掌握以上概念和公式,并灵活应用.(1)利用求总数,部分的百分比,众数,中位数的公式和定义进行求解即可;(2)利用加权平均数公式进行求解即可;(3)利用样本频数预估总体频数即可.【小问1详解】解:;3小时人数所占的百分比为,∴;∵在该组数据中4出现的次数最多,∴众数为4;中位数为排序后的第20位和21位的平均数,∴中位数为;故答案为:40,25,4,3;【小问2详解】解:该组数据的平均数为,∴这组数据的平均数是;【小问3详解】解:在所抽取的样本中,每月参加志愿服务的时间是4h的学生占,根据样本数据,估计该校1000名学生中,每月参加志愿服务的时间是4h的学生约占,有.估计该校学生每月参加志愿服务的时间是4h的人数约为350.21.已知与相切于点与相交于点D,E上一点.(1)如图①,求的大小;(2)如图②,当时,与相交于点,延长与相交于点,若的半径为3,求和的长.【答案】(1)(2)【解析】【分析】本题考查切线的性质,圆周角定理,解直角三角形,熟练掌握相关知识点,是解题的关键:(1)连接,切线的性质得到,三线合一,求出的度数,圆周角定理求出的度数即可;(2)平行线的性质,结合三角形的外角的性质,得到,直径得到,解,进行求解即可.【小问1详解】解:连接.与相切于点,.又,平分.∴.,.在中,,.【小问2详解】由(1)知:.,.为的一个外角,.由题意,为的直径,.又的半径为3,则:.在中,,.22.综合与实践活动中,要用测角仪测量天津站附近世纪钟建筑的高度(如图①).某学习小组设计了一个方案:如图②所示,点,,依次在同一条水平直线上,,,且.在处测得世纪钟建筑顶部的仰角为,在处测得世纪钟建筑顶部的仰角为,.根据该学习小组测得的数据,计算世纪钟建筑的高度(结果取整数).参考数据:,.【答案】世纪钟建筑的高度约为【解析】【分析】本题考查了解直角三角形的应用.延长与相交于点,在Rt和中,分别求得和,再根据,列式计算求解即可.【详解】解:如图,延长与相交于点,根据题意,可得,有,,,,,在Rt中,,,在中,,.,...答:世纪钟建筑的高度约为.23.已知小华的家、书店、公园依次在同一条直线上,书店离家,公园离家.小华从家出发,先匀速步行了到书店,在书店停留了,之后匀速步行了到公园,在公园停留后,再用匀速跑步返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中小华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:小华离开家的时间161850小华离家的距离
②填空:小华从公园返回家的速度为____________;③当时,请直接写出小华离家的距离关于时间的函数解析式;(2)若小华的妈妈与小华同时从家出发,小华的妈妈以的速度散步直接到公园.在从家到公园的过程中,对于同一个的值,小华离家的距离为,小华的妈妈离家的距离为,当时,求的取值范围(直接写出结果即可).【答案】(1)①②③(2)【解析】【分析】本题主要考查了函数的图形,数形结合的数学思想,求分段函数的解析式,一次函数和不等式相结合等内容,解题的关键是准确从图形中获取信息.(1)①理解题意,从图形中获取准确信息即可;②理解题意,从图形中获取准确信息利用速度公式进行计算即可;③理解题意,从图形中获取准确信息,并利用待定系数法进行分段求函数解析式即可;(2)求出相关解析式,列出等式求解,并结合图形即可求出不等式的解集.【小问1详解】解:①小华去书店的速度为,1分钟时小华离家的距离为;由图可知18分钟时,小华离家的距离为;50分钟时,小华离家的距离为;故答案为:;②小华返回家的速度为故答案为:;③由①得小华去书店的速度为,∴当时,;由图可知,当时,;当时,假设直线解析式为,将代入解析式得,解得∴;综上,;【小问2详解】解:如图所示,为妈妈的图形,根据题意可知,小华妈妈的速度为,所以其直线解析式为,当时,令,解得,经验证,符合题意;令,解得,经验证,符合题意;结合图形,当时,.24.在平面直角坐标系中,为原点,等边的顶点,点在第一象限,等边的顶点,顶点在第二象限.(1)填空:如图①,点的坐标为____________,点的坐标为____________;(2)将等边沿水平方向向右平移,得到等边,点的对应点分别为.设.①如图②,若边与边相交于点,当与重叠部分为四边形时,试用含有的式子表示线段的长,并直接写出的取值范围;②设平移后重叠部分的面积为,当时,求的取值范围(直接写出结果即可).【答案】(1)(2)①,②【解析】【分析】(1)作于点,作于点,根据等边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天然气管网建设资源保障方案
- 雨污分流排水设计与实施方案
- 企业导师聘用协议书
- 代缴村医五险协议书
- 企业利润分成协议书
- 个人债务分割协议书
- 乌鲁木齐民宿协议书
- 企业间用工合同范本
- 企业扶持项目协议书
- 钢结构施工进度控制方法
- 2025北京市顺义区卫生健康委员会所属事业单位招聘额度人员14人笔试考试参考题库及答案解析
- 2025年绥化辅警招聘真题及答案
- 第十四章全等三角形章末复习课件-人教版数学八年级上册
- 人工智能行业现状与未来展望
- Unit3+Sports+and+fitness+一轮词汇复习+课件+-2026届高三英语人教版必修第一册
- 中国远洋海运2025校园招聘笔试历年参考题库附带答案详解
- 2025年工会社会工作者招聘笔试模拟试题库及答案
- GB/T 14996-2025变形高温合金冷轧板材和带材
- 人教版(2024)八年级上册地理第二章《中国的自然环境》大单元教学设计
- 维护食堂就餐秩序课件
- 排水管网运维养护服务方案投标文件(技术标)
评论
0/150
提交评论