




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省达州市渠县中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3.下列生态环保标志中,是中心对称图形的是()A.B.C.D.4.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣105.直线y=3x+1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10117.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A.cm B.2cm C.2cm D.cm8.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A. B. C. D.9.下列计算正确的是()A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a10.用配方法解方程时,可将方程变形为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.12.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.13.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.14.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果选拔一名学生去参赛,应派_________去.15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.16.如图,直线a∥b,直线c分别于a,b相交,∠1=50°,∠2=130°,则∠3的度数为()A.50° B.80° C.100° D.130°三、解答题(共8题,共72分)17.(8分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.18.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.19.(8分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由20.(8分)先化简,,其中x=.21.(8分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(12分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.(1)求证:;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.①如图2,若∠AFE=45°,求的值;②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.24.黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.2、C【解析】试题解析:A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,不是中心对称图形,故本选项错误;C.既是中心对称图又是轴对称图形,故本选项正确;D.是轴对称图形,不是中心对称图形,故本选项错误.故选C.3、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.4、C【解析】
本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.5、D【解析】
利用两点法可画出函数图象,则可求得答案.【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.6、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】31600000000=3.16×1.故选:C.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示.7、B【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.8、B【解析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.9、D【解析】
根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.10、D【解析】
配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(3,2).【解析】
根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.【详解】解:如图所示:∵A(0,a),∴点A在y轴上,∵C,D的坐标分别是(b,m),(c,m),∴B,E点关于y轴对称,∵B的坐标是:(﹣3,2),∴点E的坐标是:(3,2).故答案为:(3,2).【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.12、【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.14、乙【解析】
∵丁〉甲乙=丙,∴从乙和丙中选择一人参加比赛,
∵S
乙2<S
丙2,
∴选择乙参赛,
故答案是:乙.15、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质16、B【解析】
根据平行线的性质即可解决问题【详解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故选B.【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.三、解答题(共8题,共72分)17、证明见解析【解析】
根据AB=AC,得到,于是得到∠ADB=∠ADC,根据AD是⊙O的直径,得到∠B=∠C=90°,根据三角形的内角和定理得到∠BAD=∠DAC,于是得到结论.【详解】证明:∵AB=AC,∴,∴∠ADB=∠ADC,∵AD是⊙O的直径,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴,∴BD=CD.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.18、证明见解析.【解析】
根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.19、(1);(2)(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】
(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N的坐标,由等式得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=,∴点B的坐标为(3,),设直线AB的函数关系式为y=kx+b,,解得,,则直线AB的函数关系式(2)当x=t时,y=t+1,∴点M的坐标为(t,t+1),当x=t时,∴点N的坐标为(0≤t≤3);(3)若四边形BCMN为平行四边形,则有MN=BC,
∴,解得t1=1,t2=2,∴当t=1或2时,四边形BCMN为平行四边形,
①当t=1时,MP=,PC=2,∴MC==MN,此时四边形BCMN为菱形,②当t=2时,MP=2,PC=1,∴MC=≠MN,此时四边形BCMN不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.20、【解析】
根据分式的化简方法先通分再约分,然后带入求值.【详解】解:当时,.【点睛】此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.21、(1)C;(2)100【解析】
(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400=100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.22、(1)见解析(2)见解析【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形23、(1)见解析;(2)①;②cos∠AFE=【解析】
(1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;(2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.【详解】(1)设BE=EC=2,则AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,则,∴;(2)①如图2,过F作交AD于点G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如图3,作交AD于点T,作于H,则,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林防护巡护知识培训内容课件
- 森林火灾业务知识培训课件
- 森林扑火知识培训班课件
- 2025年电商物流运营管理专家面试模拟题集及答案解析
- 2025年GCP考试题库附参考答案(综合题)
- 2025年电子商务创业实战面试官指南与模拟题解析
- 2025年专业级物业电梯管理员应聘技巧与预测题
- 桥梁工程基础知识培训课件
- 2025年酒店管理招聘笔试模拟题与面试技巧
- 湖北省恩施高级中学、十堰一中、十堰二中等2026届化学高三上期中达标检测试题含解析
- 2025年地址标签纸项目市场调查研究报告
- 《绿色经济》课件
- 2025-2030石灰石行业市场发展分析及发展趋势前景预测报告
- 中小学教师岗位安全工作指南培训
- DB14T 1596-2024玉米间作花生机械化栽培技术规程
- 2025-2030坚果炒货市场发展分析及行业投资战略研究报告
- 厨房安全知识培训
- 刑事撤案申请书
- 小学数学作业与核心素养的培养
- 2023年山东临沂中考英语试题及答案
- 2024年考研英语一阅读理解80篇试题及答案
评论
0/150
提交评论