达标测试沪科版9年级下册期末试卷带答案详解(基础题)_第1页
达标测试沪科版9年级下册期末试卷带答案详解(基础题)_第2页
达标测试沪科版9年级下册期末试卷带答案详解(基础题)_第3页
达标测试沪科版9年级下册期末试卷带答案详解(基础题)_第4页
达标测试沪科版9年级下册期末试卷带答案详解(基础题)_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A.1cm B.2cm C.2cm D.4cm2、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.3、下列语句判断正确的是()A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形4、在平面直角坐标系中,已知点与点关于原点对称,则的值为()A.4 B.-4 C.-2 D.25、下列图形中,可以看作是中心对称图形的是()A. B.C. D.6、如图是由5个相同的小正方体搭成的几何体,它的左视图是().A. B. C. D.7、下列关于随机事件的概率描述正确的是()A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()A. B.1 C.2 D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为_____.3、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.4、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.5、某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以下”的频率通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).6、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.7、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.三、解答题(7小题,每小题0分,共计0分)1、某省高考采用“3+1+2”模式:“3”是指语文、数学、英语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在思想政治、化学、生物、地理4科中任选2科.(1)假定在“1”中选择历史,在“2”中已选择地理,则选择生物的概率是________;(2)求同时选择物理、化学、生物的概率.2、如图,是的弦,是上的一点,且,于点,交于点.若的半径为6,求弦的长.3、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),,.(1)①在点A,B,C中,线段ON的“二分点”是______;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.4、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众数8b中位数a8方差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.5、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.6、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.(1)当直线l在如图①的位置时①请直接写出与之间的数量关系______.②请直接写出线段BH,EH,CH之间的数量关系______.(2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;(3)已知,在直线l旋转过程中当时,请直接写出EH的长.7、(1)解方程:(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.-参考答案-一、单选题1、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于设半径为r,即OA=OB=AB=r,OM=OA•sin∠OAB=,∵圆O的内接正六边形的面积为(cm2),∴△AOB的面积为(cm2),即,,解得r=4,故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.2、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.3、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,∴B,C,D都不符合题意;故选:A.【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.4、C【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反即可得到答案.【详解】解:点与点关于原点对称,,,.故选:C.【点睛】此题主要考查了原点对称点的坐标特点,解题的关键是掌握点的变化规律.5、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,第一层有2个正方形,第二层左侧有1个正方形.故选:B.【点睛】本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.7、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1、##【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点∵点C的坐标为(2,2),圆C与x轴相切于点A,∴点A的坐标为(2,0),∴OA=OD=2,即O是AD的中点,又∵M是AB的中点,∴OM是△ABD的中位线,∴,∴当BD最小时,OM也最小,∴当B运动到时,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案为:.【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.2、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB,交AC于点D,∵四边形OABC为平行四边形,,∴四边形OABC为菱形,∴,,,∵,∴为等边三角形,∴,∴,在中,设,则,∴,即,解得:或(舍去),∴的长为:,故答案为:.【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.3、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.4、##【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【详解】解:延长AG交CD于M,如图1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH,∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值为-1,故答案为:-1.【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.5、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可.【详解】解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为∴用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8.【点睛】本题考查了概率.解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下.6、【分析】根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.【详解】解:∵当且,一元二次方程有实数根∴且从,0,1,2这四个数中任取一个数,符合条件的结果有所得方程有实数根的概率为故答案为:【点睛】本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.7、65【分析】根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA是⊙O的切线,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题1、(1)(2)【分析】(1)直接根据概率公式即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.(1)解:在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为.故答案为:;(2)解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数,其中选中“化学”“生物”的有2种,则.在“1”中选择物理的概率,同时选择物理、化学、生物的概率.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率,解题的关键是掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.2、【分析】连接OB,由圆周角定理得出∠AOB=2∠ACB=120°,再由垂径定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【详解】如图,连接OB,则∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案为:.【点睛】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3、(1)①B和C;②或;(2)或【分析】(1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.【详解】(1)①∵点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为,最大值为,∴点B是线段ON的“二分点”,点C到ON的最小值为1,最大值为,∴点C是线段ON的“二分点”,故答案为:B和C;②若时,如图所示:点C到OD的最小值为,最大值为,∵点C为线段OD的“二分点”,∴,解得:;若,如图所示:点C到OD的最小值为1,最大值为,满足题意;若时,如图所示:点C到OD的最小值为1,最大值为,∵点C为线段OD的“二分点”,∴,解得:(舍);若时,如图所示:点C到OD的最小值为,最大值为,∵点C为线段OD的“二分点”,∴,解得:或(舍),综上所得:a的取值范围为或;(2)如图所示,设线段AN上存在的“二分点”为,当时,最小值为:,最大值为:,∴,即,∵,∴∴;当,时,最小值为:,最大值为:,∴∴,即,∵,∴,∵,∴不存在;当,时,最小值为:,最大值为:,∴,即,∴,∵,∴不存在;当时,最小值为:,最大值为:,∴,即,∴,∵,∴,综上所述,r的取值范围为或.【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.4、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可.(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人∴此次测试成绩不低于9分的学生有(人)(3)解:∵七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.5、(1)B和C;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.【详解】(1)如图所示:在点B,C,D中,与点A组成的“成对关联点”的点是B和C,故答案为:B和C;(2)∵∴在直线上,∵点F与点E关于x轴对称,∴在直线,如下图所示:直线和与分别交于点,,与直线分别交于,,由题可得:,当点E在线段上时,有的“成对关联点”∴;(3)如图,当点G在上时,轴,在上不存在这样的矩形;如图,当点G在下方时,也不存在这样的矩形;如图,当点G在上方时,存在这样的矩形GMNH,当恰好只能构成一个矩形时,设,直线与y轴相交于点K,则,,,,,∴,即,∴,解得:或(舍),综上:当时,点G,H是的“成对关联点”.【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.6、(1)①;②;(2);证明见解析;(3)或.【分析】(1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;(3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.【详解】解:(1)①∵CE=BC,四边形ABCD为正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论