珠海市九中九年级上册压轴题数学模拟试卷及答案_第1页
珠海市九中九年级上册压轴题数学模拟试卷及答案_第2页
珠海市九中九年级上册压轴题数学模拟试卷及答案_第3页
珠海市九中九年级上册压轴题数学模拟试卷及答案_第4页
珠海市九中九年级上册压轴题数学模拟试卷及答案_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

珠海市九中九年级上册压轴题数学模拟试卷及答案一、压轴题1.小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。(1)如图1,M为BC上一点;①小明要将一球从点M击出射向边AB,经反弹落入D袋,请你画出AB上的反弹点F的位置;②若将一球从点M(2,12)击出射向边AB上点F(0.5,0),问该球反弹后能否撞到位于(-0.5,0.8)位置的另一球?请说明理由(2)如图2,在球桌上放置两个挡板(厚度不计)挡板MQ的端点M在AD中点上且MQ⊥AD,MQ=2m,挡板EH的端点H在边BC上滑动,且挡板EH经过DC的中点E;①小聪把球从B点击出,后经挡板EH反弹后落入D袋,当H是BC中点时,试证明:DN=BN;②如图3,小明把球从B点击出,依次经挡板EH和挡板MQ反弹一次后落入D袋,已知∠EHC=75°,请你直接写出球的运动路径BN+NP+PD的长。2.二次函数的图象交y轴于点A,顶点为P,直线PA与x轴交于点B.(1)当m=1时,求顶点P的坐标;(2)若点Q(a,b)在二次函数的图象上,且,试求a的取值范围;(3)在第一象限内,以AB为边作正方形ABCD.①求点D的坐标(用含m的代数式表示);②若该二次函数的图象与正方形ABCD的边CD有公共点,请直接写出符合条件的整数m的值.3.已知抛物线经过原点,与轴相交于点,直线与抛物线交于两点,与轴交于点,与轴交于点,点是线段上的一个动点(不与端点重合),过点作交于点,连接(1)求抛物线的解析式及点的坐标;(2)当的面积最大时,求线段的长;(3)在(2)的条件下,若在抛物线上有一点和点P,使为直角三角形,请直接写出点的坐标.4.如图,过原点的抛物线y=﹣x2+bx+c与x轴交于点A(4,0),B为抛物线的顶点,连接OB,点P是线段OA上的一个动点,过点P作PC⊥OB,垂足为点C.(1)求抛物线的解析式,并确定顶点B的坐标;(2)设点P的横坐标为m,将△POC绕着点P按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n(0<n<2)个单位,点B、C′平移后对应的点分别记为B′、C″,是否存在n,使得四边形OB′C″A的周长最短?若存在,请直接写出n的值和抛物线平移的方向,若不存在,请说明理由.5.如图1,抛物线与轴交于、两点,与轴交于点,作直线.点是线段上的一个动点(不与,重合),过点作轴于点.设点的横坐标为.(1)求抛物线的表达式及点的坐标;(2)线段的长用含的式子表示为;(3)以为边作矩形,使点在轴负半轴上、点在第三象限的抛物线上.①如图2,当矩形成为正方形时,求的值;②如图3,当点恰好是线段的中点时,连接,.试探究坐标平面内是否存在一点,使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.6.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,图象G的最低点为P(x0,y0).(1)当y0=﹣1时,求m的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.7.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.9.定义:对于二次函数,我们称函数为它的分函数(其中为常数).例如:的分函数为.设二次函数的分函数的图象为.(1)直接写出图象对应的函数关系式.(2)当时,求图象在范围内的最高点和最低点的坐标.(3)当图象在的部分与轴只有一个交点时,求的取值范围.(4)当,图象到轴的距离为个单位的点有三个时,直接写出的取值范围.10.如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.11.如图,在中,为边的中点,为线段上一点,连结并延长交边于点,过点作的平行线,交射线于点,设.(1)当时,求的值;(2)设,求关于的函数关系式;(3)当时,求的值.12.如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当________时,为直角三角形.13.如图,已知矩形ABCD中,AB=8,AD=6,点E是边CD上一个动点,连接AE,将△AED沿直线AE翻折得△AEF.(1)当点C落在射线AF上时,求DE的长;(2)以F为圆心,FB长为半径作圆F,当AD与圆F相切时,求cos∠FAB的值;(3)若P为AB边上一点,当边CD上有且仅有一点Q满∠BQP=45°,直接写出线段BP长的取值范围.14.如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在中,⊙O的环绕点是___________;②直线y=2x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为1,圆心为(0,t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.15.如图,在直角中,,,作的平分线交于点,在上取点,以点为圆心经过、两点画圆分别与、相交于点、(异于点).(1)求证:是的切线;(2)若点恰好是的中点,求的长;(3)若的长为.①求的半径长;②点关于轴对称后得到点,求与的面积之比.16.如图1,已知中,,,,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置(1)若点坐标为时,求点的坐标;(2)若点和点在同一个反比例函数的图象上,求点坐标;(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由17.已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.18.如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.19.在平面直角坐标系中,经过点且与平行的直线,交轴于点,如图1所示.(1)试求点坐标,并直接写出的度数;(2)过的直线与成夹角,试求该直线与交点的横坐标;(3)如图2,现有点在线段上运动,点在轴上,为线段的中点.①试求点的纵坐标关于横坐标的函数关系式;②直接写出点的运动轨迹长度为.20.对于⊙C与⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q可以与点P重合),且,则点P称为点A关于⊙C的“生长点”.已知点O为坐标原点,⊙O的半径为1,点A(-1,0).(1)若点P是点A关于⊙O的“生长点”,且点P在x轴上,请写出一个符合条件的点P的坐标________;(2)若点B是点A关于⊙O的“生长点”,且满足,求点B的纵坐标t的取值范围;(3)直线与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的“生长点”,直接写出b的取值范围是_____________________________.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①答案见解析②答案见解析(2)①证明见解析②【解析】【分析】(1)①根据反射的性质画出图形,可确定出点F的位置;②过点H作HG⊥AB于点G,利用点H的坐标,可知HG的长,利用矩形的性质结合已知可求出点B,C的坐标,求出BM,BF的长,再利用锐角三角函数的定义,去证明tan∠MFB=tan∠HFG,即可证得∠MFB=∠HFG,即可作出判断;(2)①连接BD,过点N作NT⊥EH于点N,交AB于点T,利用三角形中位线定理可证得EH∥BD,再证明MQ∥AB,从而可证得∠DNQ=∠BNQ,∠DQN=∠NQB,利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质,可证得结论;②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,利用轴对称的性质,可证得AP=DP,NB'=NB,∠BHN=∠NHB'根据反射的性质,易证AP,NQ,NC在一条直线上,从而可证得BN+NP+PD=AB',再利用邻补角的定义,可求出∠B'HG=30°,作EK=KH,利用等腰三角形的性质,及三角形外角的性质,求出∠CKH的度数,利用解直角三角形表示出KH,CK的长,由BC=2,建立关于x的方程,解方程求出x的值,从而可得到CH,B'H的长,利用解直角三角形求出GH,BH的长,可得到点B'的坐标,再求出AL,B'L的长,然后在Rt△AB'L中,利用勾股定理就可求出AB'的长.【详解】(1)解:①如图1,②答:反弹后能撞到位于(-0.5,0.8)位置的另一球理由:如图,设点H(-0.5,0.8),过点H作HG⊥AB于点G,∴HG=0.8∵矩形ABCD,点O,E分别为AB,CD的中点,AD=2,AB=4,∴OB=OA=2,BC=AD=OE=2∴点B(2,0),点C(2,2),∵点M(2,1.2),点F(0.5,0),∴BF=2-0.5=1.5,BM=1.2,FG=0.5-(-0.5)=1在Rt△BMF中,tan∠MFB=,在Rt△FGH中,tan∠HFG=,∴∠MFB=∠HFG,∴反弹后能撞到位于(-0.5,0.8)位置的另一球.(2)解:①连接BD,过点N作NT⊥EH于点N,交AB于点T,∴∠TNE=∠TNH=90°,∵小聪把球从B点击出,后经挡板EH反弹后落入D袋,∴∠BNH=∠DNE,∴∠DNQ=∠BNQ;∵点M是AD的中点,MQ⊥EO,∴MQ∥AB,∴点Q是BD的中点,∴NT经过点Q;∵点E,H分别是DC,BC的中点,∴EH是△BCD的中位线,∴EH∥BD∵NT⊥EH∴NT⊥BD;∴∠DQN=∠NQB=90°在△DNQ和△BNQ中,∴△DNQ≌△BNQ(ASA)∴DN=BN②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,∴AP=DP,NB'=NB,∠BHN=∠NHB'由反射的性质,可知AP,NQ,NC在一条直线上,∴BN+NP+PD=NB'+NP+AP=AB';∵∠EHC=75°,∠EHC+∠BHN=180°,

∴∠BHN=180°-75°=105°,∴∠NHB'=∠EHC+∠B'HG=105°∴∠B'HG=30°;如图,作EK=KH,在Rt△ECH中,∠EHC=75°,∴∠E=90°-75°=15°,∴∠E=∠KHE=15°∴∠CKH=∠E+∠KHE=15°+15°=30°,∵设CH=x,则KH=2x,CK=∴解之:x=,∴CH=∴BH=B'H=BC-CH=2-()=;在Rt△B'GH中,B'G=;GH=B'Hcos∠B'HG=()×;BG=BH+GH=∴点B'的横坐标为:,∴点B';∴AL=,B'L=在Rt△AB'L中,AB'=∴球的运动路径BN+NP+PD的长为.【点睛】本题考查反射的性质,解直角三角形,矩形的性质,全等三角形的判定和性质以及勾股定理等知识点:(1)①根据反射的性质作图,②根据等角的三角函数值相等证明∠MFB=∠HFG来说明反弹后能撞到另一球;(2)①利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质可得结论,②作出辅助线,根据反射的性质和轴对称的性质证明BN+NP+PD=AB',然后构建方程,解直角三角形并结合勾股定理求出AB'的长;其中能够根据反射的性质作出图形,利用方程思想及数形结合思想结合直角三角形的特殊角进行求解是解题的关键.2.(1)P(2,);(2)a的取值范围为:a<0或a>4;(3)①D(m,m+3);②2,3,4.【解析】【分析】(1)把m=1代入二次函数解析式中,进而求顶点P的坐标即可;(2)把点Q(a,b)代入二次函数解析式中,根据得到关于a的一元二次不等式即一元一次不等式组,解出a的取值范围即可;(3)①过点D作DE⊥x轴于点E,过点A作AF⊥DE于点F,求出二次函数与y轴的交点A的坐标,得到OA的长,再根据待定系数法求出直线AP的解析式,进而求出与x轴的交点B的坐标,得到OB的长;通过证明△ADF≌△ABO,得到AF=OA=m,DF=OB=3,DE=DF+EF=DF+OA=m+3,求出点D的坐标;②因为二次函数的图象与正方形ABCD的边CD有公共点,由①同理可得:C(m+3,3),分当x等于点D的横坐标时与当x等于点C的横坐标两种情况,进行讨论m可能取的整数值即可.【详解】解:(1)当m=1时,二次函数为,∴顶点P的坐标为(2,);(2)∵点Q(a,b)在二次函数的图象上,∴,即:∵,∴>0,∵m>0,∴>0,解得:a<0或a>4,∴a的取值范围为:a<0或a>4;(3)①如下图,过点D作DE⊥x轴于点E,过点A作AF⊥DE于点F,∵二次函数的解析式为,∴顶点P(2,),当x=0时,y=m,∴点A(0,m),∴OA=m;设直线AP的解析式为y=kx+b(k≠0),把点A(0,m),点P(2,)代入,得:,解得:,∴直线AP的解析式为y=x+m,当y=0时,x=3,∴点B(3,0);∴OB=3;∵四边形ABCD是正方形,∴AD=AB,∠DAF+∠FAB=90°,且∠OAB+∠FAB=90°,∴∠DAF=∠OAB,在△ADF和△ABO中,,∴△ADF≌△ABO(AAS),∴AF=OA=m,DF=OB=3,DE=DF+EF=DF+OA=m+3,∴点D的坐标为:(m,m+3);②由①同理可得:C(m+3,3),∵二次函数的图象与正方形ABCD的边CD有公共点,∴当x=m时,,可得,化简得:.∵,∴,∴,显然:m=1,2,3,4是上述不等式的解,当时,,,此时,,∴符合条件的正整数m=1,2,3,4;当x=m+3时,y≥3,可得,∵,∴,即,显然:m=1不是上述不等式的解,当时,,,此时,恒成立,∴符合条件的正整数m=2,3,4;综上:符合条件的整数m的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.3.(1)抛物线的解析式为,点的坐标为;(2);(3)点的坐标为或【解析】【分析】(1)因为抛物线经过原点,A,B点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x轴的交点F点的坐标。(2)过点作轴于点,先求出直线与坐标轴的两个交点,利用三角函数求出OM与OE的比值,再利用配方法求得面积的最值.(3)利用两点间的距离公式求得,,,再利用勾股定理与分类讨论求出P点的坐标.【详解】解:抛物线经过原点两点在抛物线上解得故抛物线的解析式为令,则解得(舍去),故点的坐标为过点作轴于点,对于当时,;当时,设直线与轴交于点,直线的解析式为则,易求直线的解析式为令,解得故点的横坐标为又当时,的面积最大,此时点的坐标为【提示】把代入,得设点的坐标为则,当时,即解得,故点的坐标为当时,即解得(不合题意,舍去),故点的坐标为当时.过点作轴.交抛物线于点,连接解得,此时故点与点重合,此时综上可知.点的坐标为【点晴】本题主要考查的是待定系数法求二次函数的解析式,二次函数的最值,抛物线与xx轴的交点,二次函数与一次函数的交点,勾股定理,三角形的面积,两点间的距离公式,运用了分类讨论思想.4.(1),点B(2,2);(2)m=2或;(3)存在;n=时,抛物线向左平移.【解析】【分析】(1)将点A和点O的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B的坐标;(2)由点A、点B、点C的坐标以及旋转的性质可知△△PDC为等腰直角三角形,从而可得到点O′坐标为:(m,m),点C′坐标为:(,),然后根据点在抛物线上,列出关于m的方程,从而可解得m的值;(3)如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处,以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短,先求得点B′的坐标,根据点B移动的方向和距离从而可得出点抛物线移动的方向和距离.【详解】解:(1)把原点O(0,0),和点A(4,0)代入y=x2+bx+c.得,∴.∴.∴点B的坐标为(2,2).(2)∵点B坐标为(2,2).∴∠BOA=45°.∴△PDC为等腰直角三角形.如图,过C′作C′D⊥O′P于D.∵O′P=OP=m.∴C′D=O′P=m.∴点O′坐标为:(m,m),点C′坐标为:(,).当点O′在y=x2+2x上.则−m2+2m=m.解得:,(舍去).∴m=2.当点C′在y=x2+2x上,则×()2+2×=m,解得:,(舍去).∴m=(3)存在n=,抛物线向左平移.当m=时,点C′的坐标为(,).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(,),点B(2,2).∴点A′(,).∴点A″的坐标为(,).设直线OA″的解析式为y=kx,将点A″代入得:,解得:k=.∴直线OA″的解析式为y=x.将y=2代入得:x=2,解得:x=,∴点B′得坐标为(,2).∴n=2.∴存在n=,抛物线向左平移.【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m,m),点C′坐标为:(,)以及点B′的坐标是解题的关键.5.(1),;(2);(3)①的值为;②存在;点的坐标为或或.【解析】【分析】(1)将、代入,得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而可得到抛物线的表达式和点C的坐标;(2)设直线BC的解析式为即可求出解析式的表达式,令x=m,即可得到线段DE的长用含m的式子表示为;(3)①由点的横坐标为,且,可得,再根据四边形是正方形求出点G的坐标,代入函数解析式即可求出m的值;②利用①中的方法求出点D的坐标、、的值,再分不同情况讨论,利用两点间距离公式和全等三角形对应边相等列方程组求解即可.【详解】(1)将、代入中,得,解,得,∴抛物线的表达式为.将代入,得,∴点.(2)设直线BC的解析式为,将点、代入可得,,解得,∵直线BC的表达式为,当x=m时,,即线段DE的长用含m的式子表示为.故答案为:;(3)①∵点的横坐标为,且,∴,∵四边形是正方形,∴,∴,∵点在第三象限,∴点的坐标为,∵点在抛物线上,∴,解(不符合题意,舍去),,∴当矩形成为正方形时,的值为.②存在;理由如下:由①可知FG=DE=4-m,∵点O是线段EF的中点,∴点G的坐标为(-m,m-4),∵点在抛物线上,∴,解(不符合题意,舍去),,∴点D的坐标为(2,-2),∴,,如图,设点的坐标为(x,y),分以下三种情况:I、当位于点P时,可得PF=CD,PC=CF,∴,,解得,(不合题意,舍去),∴点P的坐标为;II、当位于点时,方法同I可得点的坐标为;III、当位于点时,方法同I可得点的坐标为;综上,点的坐标为或或.【点睛】此题是二次函数综合题,主要考查了待定系数法确定解析式,两点间的距离公式,全等三角形的性质,解本题的关键是确定函数关系式.6.(1)或﹣1;(2);(3)0<x1<1;(4)m=0或m>或≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=或(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣)2+,∵﹣1<0,∴m=时,y0的最大值为,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>,或﹣m≤2m﹣2<0,解得≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得≤m<1,综上所述,满足条件m的值为m=0或m>或≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.7.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【解析】【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;(3)方法1:先判断出最大时,的面积最大,进而求出,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出最大时,的面积最大,而最大是,即可得出结论.【详解】解:(1)点,是,的中点,,,点,是,的中点,,,,,,,,,,,,,,,故答案为:,;(2)是等腰直角三角形.由旋转知,,,,,,,利用三角形的中位线得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,最大时,的面积最大,且在顶点上面,最大,连接,,在中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大时,面积最大,点在的延长线上,,,.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.8.(1)当t=1时,AD=AB,AE=1;(2)当t=或或或时,△DEG与△ACB相似.【解析】试题分析:(1)根据勾股定理得出AB=5,要使AD=AB=5,∵动点D每秒5个单位的速度运动,∴t=1;(2)当△DEG与△ACB相似时,要分两种情况讨论,根据相似三角形的性质,列出比例式,求出DE的表达式时,要分AD<AE和AD>AE两种情况讨论.试题解析:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.点睛:本题第一问比较简单,第二问的讨论较多,关键是要理清头绪,相似三角形的讨论,和线段的大小的选择,做题时要分清,分细.9.(1)(2)图象在范围内的最高点和最低点的坐标分别为,(3)当或或时,图象在的部分与轴只有一个交点(4),.【解析】【分析】(1)根据分函数的定义直角写成关系式即可;(2)将m=1代入(1)所得的分函数可得,然后分和两种情况分别求出最高点和最低点的坐标,最后比较最大值和最小值即可解答;(3)由于图象在的部分与轴只有一个交点时,则可令对应二元一次方程的根的判别式等于0,即可确定m的取值;同时发现无论取何实数、该函数的图象与轴总有交点,再令x=m代入原函数解析式,求出m的值,据此求出m的取值范围;(4)先令或-m①,利用根的判别式小于零确定求出m的取值范围,然后再令x=m代入或-m②,然后再令判别式小于零求出m的取值范围,令x=m代入或-m③,令判别式小于零求出m的范围,然后取①②③两两的共同部分即为m的取值范围.【详解】(1)图象对应的函数关系式为(2)当时,图象对应的函数关系式为.当时,将配方,得.所以函数值随自变量的增大而增大,此时函数有最小值,无最大值.所以当时,函数值取得最小值,最小值为.所以最低点的坐标为.当时,将配方,得.所以当时,函数值取得最小值,最小值为所以当时,函数值取得最大值,最大值为所以最低点的坐标为,最高点的坐标为所以,图象在范围内的最高点和最低点的坐标分别为,.(3)当时,令,则所以无论取何实数,该函数的图象与轴总有交点.所以当时,图象在的部分与轴只有一个交点.当时,.令,则.解得,.所以当或时,图象在的部分与轴只有一个交点.综上所述,当或或时,图象在的部分与轴只有一个交点.(4)当即,△=>0,方∵,∴m不存在;当即,△=<0,解得<m<1;①将x=m代入得-3m2+3m-1>0,因△=则m不存在;将x=-m代入得-3m2+5m-1>0,解得或;②将x=m代入得,解得或③将x=m代入得,因△=故m不存在;在①②③两两同时满足的为,,即为图象到轴的距离为个单位的点有三个时的m的取值范围.【点睛】本题属于二次函数综合题,考查了新定义函数的定义、二次函数最值和二次函数图像,正确运用二次函数图像的性质和分类讨论思想是解答本题的关键.10.(1);(2)9;(3)存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【解析】【分析】(1)根据抛物线经过A、B两点,带入解析式,即可求得a、b的值.(2)根据PA=PB,要求四边形PAOC的周长最小,只要P、B、C三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM为直角三角形,便可分为两种情况QM⊥BC和QM⊥BO,再结合△QBM∽△CBO,根据相似比例便可求解.【详解】解:(1)将点A(1,0),B(4,0)代入抛物线中,得:解得:所以抛物线的解析式为.(2)由(1)可知,抛物线的对称轴为直线.连接BC,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9.(3)当QM⊥BC时,易证△QBM∽△CBO所以,又因为△CQM为等腰三角形,所以QM=CM.设CM=x,则BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.过点M作NM⊥OB于N,则MN//OC,所以,即,所以,所以点M的坐标为()当QM⊥BO时,则MQ//OC,所以,即设QM=3t,则BQ=4t,又因为△CQM为等腰三角形,所以QM=CM=3t,BM=5-3t又因为QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以点M的坐标为().综上所述,存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.11.(1)AG:AB=;(2);(3)或.【解析】【分析】(1)根据推出BE=AG和AD=AB,进而得出AG是AD的一半即可推出最后结果;(2)先设AB=1,可推出BE=,,再证明,进而得出,即可写出关于的函数关系式;(3)当点H在边DC上时,根据可推出,进而列出方程即得;当点在的延长线上时,根据可推出,进而列出方程即得.【详解】(1)∵在中,AD=BC,AD∥BC∴∴∵,即∴∴AD=AB,AG=BE∵E为BC的中点∴BE=BC∴AG=AB则AG:AB=;(2)∵∴不妨设AB=1,则AD=x,BE=∵AD∥BC∴∴∵GH∥AE∴∠DGH=∠DAE∵AD∥BC∴∠DAE=∠AEB∴∠DGH=∠AEB在中,∠D=∠ABE∴∴∴;(3)分两种情况考虑:∵∴不妨设AB=1,则AD=x,BE=∵AD∥BC∴∴①当点H在边DC上时,如图1所示:∵DH=3HC∴∴∵∴,即解得:;②当在的延长线上时,如图2所示:∵DH=3HC∴∴∵∴,即解得:综上所述,或【点睛】本题属于相似三角形综合题,涉及的知识有:平行四边形的性质,相似三角形的判定与性质,以及平行线的性质.解本题的关键是根据H点在射线DC上,将H点的位置分为:点H在边DC上以及点在的延长线上.12.(1)详见解析;(2)能;(3)2或秒【解析】【分析】(1)在中,,,由已知条件求证;(2)求得四边形为平行四边形,若使平行四边形为菱形则需要满足的条件及求得;(3)分三种情况:①时,四边形为矩形.在直角三角形中求得即求得.②时,由(2)知,则得,求得.③时,此种情况不存在.【详解】(1)在中,∴又∵∴(2)能.理由如下:∵,∴又∵∴四边形为平行四边形在中,∴又∵∴∴,∴当时,为菱形∴AD=∴,即秒时,四边形为菱形(3)①时,四边形为矩形.在中,,.即,.②时,由(2)四边形为平行四边形知,.,.则有,.③当时,此种情况不存在.综上所述,当秒或秒时,为直角三角形.【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.13.(1)DE=3;(2);(3)BP=12-12或6<BP≤【解析】【分析】(1)当点C落在射线AF上时,设DE=x,则EF=DE=x,CE=8-x,根据勾股定理,列出方程,即可求解;(2)以F为圆心,FB长为半径作圆F,当AD与圆F相切时,设切点为M,连接FM,则FM⊥AD,过点F作FN⊥AB,设FM=x,则AN=FM=x,BF=FM=x,BN=8-x,根据勾股定理,列出方程,即可求解;(3)以PB为底边作等腰直角三角形∆PMB,以点M为圆心,MP为半径作圆M,分三类:①当圆M与CD相切时,求出BP的值;②当圆M过点C时,求出BP的值;③当圆M过点D时,求出BP的值,进而,可求出BP的范围.【详解】(1)当点C落在射线AF上时,如图1,∵在矩形ABCD中,AB=8,AD=6,△AED沿直线AE翻折得△AEF,∴AF=AD=6,AC=,∴CF=AC-AF=10-6=4,设DE=x,则EF=DE=x,CE=8-x,∵在Rt∆CFE中,,∴,解得:x=3,∴DE=3;(2)以F为圆心,FB长为半径作圆F,当AD与圆F相切时,如图2,设切点为M,连接FM,则FM⊥AD,过点F作FN⊥AB,设FM=x,则AN=FM=x,BF=FM=x,BN=8-x,∵,∴,解得:x=,∴cos∠FAB==;(3)以PB为底边作等腰直角三角形∆PMB,以点M为圆心,MP为半径作圆M,①当圆M与CD相切时,如图3,切点为Q,此时,边CD上有且仅有一点Q满足∠BQP=45°,连接QM,延长QM交PB于点H,则HQ⊥CD,HQ⊥PB,∵∆PMB是等腰直角三角形,∴设PH=BH=MH=x,则PM=QM=,∵HQ=AD=6,∴x+=6,解得:x=,∴BP=2x=②当圆M过点C时,如图4,此时,边CD上有两个点Q满足∠BQP=45°,∵∠MPB=45°,∠PBC=90°,∴BP=BC=6,③当圆M过点D时,如图5,此时,边CD上有且仅有一点Q满足∠BQP=45°,连接MD,过点M作MN⊥AD,MH⊥BP,设PH=HM=HB=x,则MP=MD=,MN=AH=8-x,ND=6-x,∵在Rt∆MND中,,∴,解得:x=,∴BP=2×=,综上所述:线段BP长的取值范围是:BP=12-12或6<BP≤.图1图2图3图4图5【点睛】本题主要考查圆和直线的位置关系和三角形的综合问题,根据题意,画出图形,利用数形结合和方程思想方法,是解题的关键.14.(1)①.②b的取值范围为或.(2)【解析】【分析】(1)①根据环绕点的定义及作图找到即可判断;②当点B在y轴正半轴上时,根据环绕点的定义考虑以下两种特殊情况:线段AB与半径为2的⊙O相切时,与当点B经过半径为1的⊙O时,分别求出此时的OB的长,即可得到可得b的取值范围,再由点B在y轴负半轴上时同理可得b的取值;(3)根据题意作出图形,求出OS与x轴正半轴的夹角为30°,得∠BOC=60°,图形H为射线OB与射线OC围成的一个扇形区域(不包括点O,半径可无穷大),分当t≥0与t<0时,根据环绕点的定义进行求解.【详解】(1)①如图,∵P1在圆上,故不是环绕点,P2引圆两条切线的夹角为90°,满足,故为⊙O的环绕点P3(0,2),∵P3O=2OM,∠P3MO=90°,∴∠MOP3=30°,同理:∠NOP3=30°,∴,故为⊙O的环绕点故填:;②半径为1的⊙O的所有环绕点在以O为圆心,半径分别为1和2的两个圆之间(如下图阴影部分所示,含大圆,不含小圆).ⅰ)当点B在y轴正半轴上时,如图1,图2所示.考虑以下两种特殊情况:线段AB与半径为2的⊙O相切时,;当点B经过半径为1的⊙O时,OB=1.因为线段AB上存在⊙O的环绕点,所以可得b的取值范围为;②当点B在y轴负半轴上时,如图3,图4所示.同理可得b的取值范围为.综上,b的取值范围为或.(3)点记为S,设OS与x轴正半轴的夹角为a∵tana=∴a=30°,如图,圆S与x轴相切,过O点作⊙S的切线OC,∵OC、OB都是⊙S的切线∴∠BOC=2∠SOB=60°,当m取遍所有整数时,就形成图形H,图形H为射线OB与射线OC围成的一个扇形区域(不包括点O,半径可无穷大)当t≥0时,过T作OC的垂线,垂足为M,当TM>2时,图形H不存在环绕点,OT=2TM,故t≤4,当t<0时,图形H上的点到T的距离都大于OT,当OT≥2时,图形H不存在⊙T环绕点,因此t>-2,综上:.【点睛】此题主要考查圆的综合问题,解题的关键是根据题意理解环绕点的定义,根据三角函数、切线的性质进行求解.15.(1)见解析;(2);(3)①或;②或【解析】【分析】(1)连接DO,如图,先根据角平分线的定义以及平行线的性质,得出∠1=∠3,从而得到DO∥BC,再根据∠C=90°,可得出结果;(2)连接FO,根据E为中点,可以得出,在Rt△AOD中,可以求出sinA的值,从而得出∠A的度数,再证明△BOF为等边三角形,从而得出∠BOF的度数,根据弧长公式可得出结果;(3)①设圆的半径为r,过作于,则,四边形是矩形.再证明,得出,据此列方程求解;②作出点F关于BD的对称点F′,连接DE,DF,DF′,FF′,再证明,最后根据相似三角形的面积比等于相似比的平方求解.【详解】(1)证明:连结,∵平分,∴,∵,∴.∴.∴.∵,∴.∴是的切线.(2)解:∵是中点,∴.∴,∴,.连接FO,又BO=OF,∴△BOF为等边三角形,∴.∴.(3)解:①过作于,则,四边形是矩形.设圆的半径为,则,.∵,∴.而,∴.∴即,解之得,.②作出点F关于BD的对称点F′,连接FF′,DE,DF,DF′,∵∠EBD=∠FBD,∴.∵是直径,∴,而、关于轴对称,∴,,DF=DF′,∴DE∥FF′,DE=DF′,∠DEF′=∠DF′E,∴,∴.当时,,,,由①知,而,∴.又易得△BCD∽△BDE,∴,∴BD2=.在Rt△BED中,DE2=BE2-BD2=4-=,∴DE==DF′.∴与的面积比.同理可得,当时,与的面积比.∴与的面积比为或.【点睛】本题是圆与相似的综合题,主要考查切线的判定,弧、弦长与圆周角的关系,弧长的求法,相似三角形的判定与性质,等边三角形的判定与性质,平行线的判定与性质等知识,解题的关键是根据题意作出辅助线再求解.16.(1);(2);(3)存在,或【解析】【分析】(1)过点作轴于点,利用三角函数值可得出,再根据翻折的性质可得出,,再解,得出,,最后结合点C的坐标即可得出答案;(2)设点坐标为(),则点的坐标是,利用(1)得出的结果作为已知条件,可得出点D的坐标为,再结合反比例函数求解即可;(3)首先存在这样的k值,分和两种情况讨论分析即可.【详解】解:(1)如图,过点作轴于点∵,∴∴由题意可知,.∴.∴在中,,∴,.∵点坐标为,∴.∴点的坐标是(2)设点坐标为(),则点的坐标是,由(1)可知:点的坐标是∵点和点在同一个反比例函数的图象上,∴.解得.∴点坐标为(3)存在这样的,使得以点,,为顶点的三角形是直角三角形解:①当时.如图所示,连接,,,与相交于点.则,,.∴∽∴∴又∵,∴∽.∴,,∴.∴,设(),则,∵,在同一反比例函数图象上,∴.解得:.∴∴②当时.如图所示,连接,,,∵,∴.在中,∵,,∴.在中,∵,∴.∴设(),则∵,在同一反比例函数图象上,∴.解得:,∴∴【点睛】本题是一道关于反比例函数的综合题目,具有一定的难度,涉及到的知识点有特殊角的三角函数值,翻折的性质,相似三角形的判定定理以及性质,反比例函数的性质等,充分考查了学生综合分析问题的能力.17.(1),;(2);(3).【解析】【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)作轴于K,轴于L,OD=3OE,则OL=3OK,DL=3KE,设点E的横坐标为t,则点D的横坐标为-3t,则点E、D的坐标分别为:(t,)、(-3t,-+3t+),即可求解;(3)设点的横坐标为,可得PH=m2+m-,过作EF∥y轴交于点交轴于点,TE=PH+YE=m2+m-+2=(m+1)2,tan∠AHE=,tan∠PET=,而∠AHE+∠EPH=2α,故∠AHE=∠PET=∠EPH=α,PH=PQ•tanα,即m2+m-=(2m+2)×,解得:m=2-1,故YH=m+1=2,PQ=4,点P、Q的坐标分别为:(2-1,4)、(-2-1,4),tan∠YHE=,tan∠PQH=;证明△PMH≌△WNH,则PH=WH,而QH=2PH,故QW=HW,即W是QH的中点,则W(-1,2),再根据待定系数法即可求解.【详解】解:(1)把、分别代入得:,解得;(2)如图2,由(1)得,作轴于K,轴于L,∴EK∥DL,∴.∵,∴,设点的横坐标为,,,∴的横坐标为,分别把和代入抛物线解析式得,∴,∴,.∵,∴,∴,∴,∴,解得(舍),,∴.(3)如图3,设点的横坐标为,把代入抛物线得,∴.过作EF∥y轴交于点交轴于点,∴轴.∵点与点关于抛物线的对称轴对称,∴PQ∥x轴,,∴,点坐标为,又∵轴,∴ET∥PH,∴,∴,∴四边形为矩形,∴,∴,∴,,,∴.∴,,∴,∴.又∵,∴.∵,∴解得,∵,∴.∴,,把代入抛物线得,∴,∴,∴,∴,∴,∴,∴.若交于点,∵NF∥PE,∴,∴,∵,∴,∴,,,∴,∴,∴.作WS∥PQ,交于点交轴于点,∴△WSH∽△QPH,∴.∵∴,∴,,∴.∵,∴,∴.设的解析式为,把、代入得,解得,∴.∵FN∥PE,∴设的解析式为,把代入得,∴的解析式为.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形等,其中(3)证明△PMH≌△WNH是解题的关键.18.(1)抛物线的解析式为y=﹣x2+2x+3,直线AB的解析式为y=﹣x+3;(2)t=或;(3)存在面积最大,最大值是,此时点P(,).【解析】【分析】(1)将A(3,0),B(0,3)两点代入y=﹣x2+bx+c,求出b及c即可得到抛物线的解析式,设直线AB的解析式为y=kx+n,将A、B两点坐标代入即可求出解析式;(2)由题意得OE=t,AF=t,AE=OA﹣OE=3﹣t,分两种情况:①若∠AEF=∠AOB=90°时,证明△AOB∽△AEF得到=,求出t值;②若∠AFE∠AOB=90°时,证明△AOB∽△AFE,得到=求出t的值;(3)如图,存在,连接OP,设点P的坐标为(x,﹣x2+2x+3),根据,得到,由此得到当x=时△ABP的面积有最大值,最大值是,并求出点P的坐标.【详解】(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,解得,∴直线AB的解析式为y=﹣x+3;(2)由题意得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①若∠AEF=∠AOB=90°时,∵∠BAO=∠EAF,∴△AOB∽△AEF∴=,∴,∴t=.②若∠AFE∠AOB=90°时,∵∠BAO=∠EAF,∴△AOB∽△AFE,∴=,∴,∴t=;综上所述,t=或;(3)如图,存在,连接OP,设点P的坐标为(x,﹣x2+2x+3),∵,∴===,∵<0,∴当x=时△ABP的面积有最大值,最大值是,此时点P(,).【点睛】此题是二次函数与一次函数的综合题,考查了待定系数法求函数解析式,相似三角形的判定及性质,函数与动点问题,函数图象与几何图形面积问题.19.(1)B(,0),30°;(2)或;(3)①y=+1(1-≤x≤1);②【解析】【分析】(1)由题意得出直线AB的解析式,令y=0即可得到点B坐标,再利用正切的含义求出∠ABO的度数;(2)设这样两条直线与直线AB交点为C、D(其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论