




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章空间向量与立体几何(A卷基础卷)考试时间:100分钟;学校:___________姓名:___________班级:___________考号:___________一.选择题(共8小题)1.(2020春•和平区期中)已知空间向量(3,1,3),(﹣1,λ,﹣1),且∥,则实数λ=()A. B.﹣3 C. D.62.(2020春•点军区校级月考)在正四面体P﹣ABC中,棱长为2,且E是棱AB中点,则的值为()A.﹣1 B.1 C. D.3.(2020春•点军区校级月考)设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,则||=()A. B. C.3 D.44.(2019秋•焦作期末)在△ABC中,D是线段AB上靠近B的三等分点,E是线段AC的中点,BE与CD交于F点,若,则a,b的值分别为()A. B. C. D.5.(2019秋•榆树市期末)若向量,且与的夹角余弦为,则λ等于()A. B. C.或 D.26.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20° B.40° C.50° D.90°7.(2019秋•龙岩期末)如图所示,在平行六面体ABCD﹣A1B1C1D1中,,,,M是D1D的中点,点N是AC1上的点,且,用表示向量的结果是()A. B. C. D.8.(2020•茂名二模)已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB.则下列命题中正确的有()①平面PAB⊥平面PAE;②PB⊥AD;③直线CD与PF所成角的余弦值为;④直线PD与平面ABC所成的角为45°;⑤CD∥平面PAE.①④ B.①③④ C.②③⑤ D.①②④⑤评卷人得分二.多选题(共4小题)9.(2019秋•连云港期末)已知点P是△ABC所在的平面外一点,若(﹣2,1,4),(1,﹣2,1),(4,2,0),则()A.AP⊥AB B.AP⊥BP C.BC D.AP∥BC10.(2019秋•南通期末)设,,是空间一个基底()A.若⊥,⊥,则⊥ B.则,,两两共面,但,,不可能共面 C.对空间任一向量,总存在有序实数组(x,y,z),使 D.则,,一定能构成空间的一个基底11.(2019秋•建邺区校级期中)已知点P是平行四边形ABCD所在的平面外一点,如果(2,﹣1,﹣4),(4,2,0),(﹣1,2,﹣1).下列结论正确的有()A.AP⊥AB B.AP⊥AD C.是平面ABCD的一个法向量 D.∥12.(2019秋•菏泽期末)如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.则()A.CD⊥AN B.BD⊥PC C.PB⊥平面ANMD D.BD与平面ANMD所在的角为30°评卷人得分三.填空题(共4小题)13.(2019秋•房山区期末)设θ是直线与平面所成的角,则角θ的取值范围是.14.(2019秋•温州期末)在平面直角坐标系中,点A(﹣1,2)关于x轴的对称点为A'(﹣1,﹣2),那么,在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为,若点C(1,﹣1,2)关于xOy平面的对称点为点C',则|B'C'|=.15.(2020•杨浦区一模)已知圆锥的底面半径为lcm,侧面积为2πcm2,则母线与底面所成角的大小为.16.(2020春•和平区校级月考)如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为.评卷人得分四.解答题(共5小题)17.(2020•长春四模)如图,四棱锥P﹣ABCD中,底面ABCD为梯形,AB∥DC,∠BAD=90°,点E为PB的中点,且CD=2AD=2AB=4,点F在CD上,且.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)若平面PAD⊥平面ABCD,PA=PD且PA⊥PD,求直线PA与平面PBF所成角的正弦值.18.(2020•沙坪坝区校级模拟)如图,四棱台ABCD﹣A1B1C1D1的底面是矩形,平面ABCD⊥平面ABB1A1,AB=2A1B1=2,AA1=2,.(1)求证:DC⊥AA1;(2)若二面角B﹣CC1﹣D的二面角的余弦值为,求AD的长.19.(2019秋•清远期末)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB,(2)若AB,PB与平面APD所成角为45°,求点B到平面APC的距离.20.(2020•安徽模拟)如图1,四边形PBCD是等腰梯形,BC∥PD,PB=BC=CD=2,PD=4,A为PD的中点,将△ABP沿AB折起,如图2,点M是棱PD上的点.(1)若M为PD的中点,证明:平面PCD⊥平面ABM;(2)若PC,试确定M的位置,使二面角M﹣AB﹣D的余弦值等于.21.(2019秋•扬州期末)如图,直三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,点O为AB中点,点D为AA1中点.(1)求平面ABC与平面B1CD所成锐二面角的大小;(2)已知点E满足,当异面直线DE与CB1所成角最小时,求实数λ的值.第一章空间向量与立体几何(A卷基础卷)【答案版】一.选择题(共8小题)1.(2020春•和平区期中)已知空间向量(3,1,3),(﹣1,λ,﹣1),且∥,则实数λ=()A. B.﹣3 C. D.6【解答】解:∵∥,∴可设k,∴,解得λ=k.故选:A.2.(2020春•点军区校级月考)在正四面体P﹣ABC中,棱长为2,且E是棱AB中点,则的值为()A.﹣1 B.1 C. D.【解答】解:如图,P﹣ABC为正四面体,则∠APC=∠BPC=∠APB=60°,E是棱AB中点,所以,,所以•()1﹣2=﹣1,故选:A.3.(2020春•点军区校级月考)设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,则||=()A. B. C.3 D.4【解答】解:设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,∴,解得x=1,y=﹣2,∴(1,1,1)+(1,﹣2,1)=(2,﹣1,2),∴||.故选:C.4.(2019秋•焦作期末)在△ABC中,D是线段AB上靠近B的三等分点,E是线段AC的中点,BE与CD交于F点,若,则a,b的值分别为()A. B. C. D.【解答】解:取AD的中点为G,连接GE.由已知得GE∥CD,所以DF∥EG,又因为D是GB的中点,所以F是BE的中点,所以.∴a,b.故选:A.5.(2019秋•榆树市期末)若向量,且与的夹角余弦为,则λ等于()A. B. C.或 D.2【解答】解:∵向量,与的夹角余弦为,∴cos,解得λ.故选:A.6.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20° B.40° C.50° D.90°【解答】解:可设A所在的纬线圈的圆心为O',OO'垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAO'为40°且OA⊥AH,在Rt△OHA中,O'A⊥OH,∴∠OHA=∠OAO'=40°,故选:B.7.(2019秋•龙岩期末)如图所示,在平行六面体ABCD﹣A1B1C1D1中,,,,M是D1D的中点,点N是AC1上的点,且,用表示向量的结果是()A. B. C. D.【解答】解:∵M是D1D的中点,∴.故选:D.8.(2020•茂名二模)已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB.则下列命题中正确的有()①平面PAB⊥平面PAE;②PB⊥AD;③直线CD与PF所成角的余弦值为;④直线PD与平面ABC所成的角为45°;⑤CD∥平面PAE.A.①④ B.①③④ C.②③⑤ D.①②④⑤【解答】解:∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PA∩AE=A,∴AB⊥平面PAE,且AB⊂面PAB,∴平面PAB⊥平面PAE,故①成立;∵AD与PB在平面的射影AB不垂直,∴②不成立;∵CD∥AF,直线CD与PF所成角为∠PFA,在Rt△PAF中,PA=2AF,∴cos∠PFA,∴③成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.∵CD∥AF∥平面PAF,平面PAF∩平面PAE=PA,∴直线CD∥平面PAE也不成立,即⑤不成立.故选:B.二.多选题(共4小题)9.(2019秋•连云港期末)已知点P是△ABC所在的平面外一点,若(﹣2,1,4),(1,﹣2,1),(4,2,0),则()A.AP⊥AB B.AP⊥BP C.BC D.AP∥BC【解答】解;A.•2﹣2+4=0,∴⊥.因此正确.B.(2,﹣1,﹣4)+(1,﹣2,1)=(3,﹣3,﹣3),•3+6﹣3=6≠0,∴AP与BP不垂直,因此不正确.C.(4,2,0)﹣(﹣2,1,4)=(6,1,﹣4),∴||,因此正确.D.假设k,则,无解,因此假设不正确,因此AP与BC不可能平行,因此不正确.故选:AC.10.(2019秋•南通期末)设,,是空间一个基底()A.若⊥,⊥,则⊥ B.则,,两两共面,但,,不可能共面 C.对空间任一向量,总存在有序实数组(x,y,z),使 D.则,,一定能构成空间的一个基底【解答】解:由,,是空间一个基底,知:在A中,若⊥,⊥,则与相交或平行,故A错误;在B中,,,两两共面,但,,不可能共面,故B正确;在C中,对空间任一向量,总存在有序实数组(x,y,z),使,故C正确;在D中,,,一定能构成空间的一个基底,故D正确.故选:BCD.11.(2019秋•建邺区校级期中)已知点P是平行四边形ABCD所在的平面外一点,如果(2,﹣1,﹣4),(4,2,0),(﹣1,2,﹣1).下列结论正确的有()A.AP⊥AB B.AP⊥AD C.是平面ABCD的一个法向量 D.∥【解答】解:对于A,•2×(﹣1)+(﹣1)×2+(﹣4)×(﹣1)=0,∴⊥,即AP⊥AB,A正确;对于B,•(﹣1)×4+2×2+(﹣1)×0=0,∴⊥,即AP⊥AD,B正确;对于C,由⊥,且⊥,得出是平面ABCD的一个法向量,C正确;对于D,由是平面ABCD的法向量,得出⊥,则D错误.故选:ABC.12.(2019秋•菏泽期末)如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.则()A.CD⊥AN B.BD⊥PC C.PB⊥平面ANMD D.BD与平面ANMD所在的角为30°【解答】解:A显然错误;若BD⊥PC,由BD⊥PA,则BD⊥平面PAC,则BD⊥AC,显然不成立;C、PB⊥AN,又PB⊥NM,可得到C成立;D、连接DN,因为PB⊥平面ADMN,所以∠BDN是BD与平面ADMN所成的角在Rt△BDN中,,所以BD与平面ADMN所成的角为30°成立;故选:CD.三.填空题(共4小题)13.(2019秋•房山区期末)设θ是直线与平面所成的角,则角θ的取值范围是[0,].【解答】解:θ是直线与平面所成的角,当直线在平面内或直线平行于平面时,θ取最小值0,当直线与平面垂直时,θ取最大值,∴角θ的取值范围是[0,].故答案为:[0,].14.(2019秋•温州期末)在平面直角坐标系中,点A(﹣1,2)关于x轴的对称点为A'(﹣1,﹣2),那么,在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C(1,﹣1,2)关于xOy平面的对称点为点C',则|B'C'|=.【解答】解:在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C(1,﹣1,2)关于xOy平面的对称点为点C',则C′(1,﹣1,﹣2),∴|B'C'|.故答案为:(﹣1,﹣2,﹣3),.15.(2020•杨浦区一模)已知圆锥的底面半径为lcm,侧面积为2πcm2,则母线与底面所成角的大小为.【解答】解:由圆锥侧面积公式S=πrl=π•1•l=2π,解得l=2,设母线与底面所成角为θ,则cosθ,∴θ,故答案为:.16.(2020春•和平区校级月考)如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为4.【解答】解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设DD1=a,则A(2,0,0),C(0,2,0),D1(0,0,a),故,设平面ACD1的一个法向量为,则,可取,故,又直线CC1与平面ACD1所成角的正弦值为,∴,解得a=4.故答案为:4.四.解答题(共5小题)17.(2020•长春四模)如图,四棱锥P﹣ABCD中,底面ABCD为梯形,AB∥DC,∠BAD=90°,点E为PB的中点,且CD=2AD=2AB=4,点F在CD上,且.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)若平面PAD⊥平面ABCD,PA=PD且PA⊥PD,求直线PA与平面PBF所成角的正弦值.【解答】解:(Ⅰ)证明:取PA的中点,连接DM,EM,在△PAB中,ME为一条中位线,则,又由题意有,,故,∴四边形DFEM为平行四边形,∴EF∥DM,又EF⊄平面PAD,DM⊂平面PAD,∴EF∥平面PAD;(Ⅱ)取AD中点N,BC中点H,连接PN,NH,由平面PAD⊥平面ABCD,且PN⊥AD,平面PAD∩平面ABCD=AD,可知PN⊥平面ABCD,又AD⊥NH,故以N为原点,NA,NH,NP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则,设平面PBF的一个法向量为,则,可取,又,故,∴直线PA与平面PBF所成角的正弦值为.18.(2020•沙坪坝区校级模拟)如图,四棱台ABCD﹣A1B1C1D1的底面是矩形,平面ABCD⊥平面ABB1A1,AB=2A1B1=2,AA1=2,.(1)求证:DC⊥AA1;(2)若二面角B﹣CC1﹣D的二面角的余弦值为,求AD的长.【解答】解:(1)取AB中点E,连接B1EAE=A1B1,且AE∥A1B1,所以四边形AEB1A1为平行四边形,所以B1E=AA1=2,BE=1,所以,则BE⊥B1E,所以AA1⊥AB,又平面ABCD⊥平面ABB1A1,所以AA1⊥平面ABCD,所以DC⊥AA1;(2)由(1)知AA1⊥AD,设AD=2a(a>0),建系如图,则A(0,0,0),B(0,0,2),C(2a,0,2),D(2a,0,0),C1(a,2,1),故,设平面CC1D的法向量,则,可取,设平面BCC1的法向量,则,可取,所以,由二面角B﹣CC1﹣D的二面角的余弦值为,得,解得a=2,所以AD=4.19.(2019秋•清远期末)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB,(2)若AB,PB与平面APD所成角为45°,求点B到平面APC的距离.【解答】解:(1)证明:∵PD⊥平面ABCD,BC在平面ABCD内,BD在平面ABCD内,∴PD⊥BC,PD⊥BD,又AP⊥BD,AP∩PD=P,且AP,PD均在平面APD内,∴BD⊥平面APD,又AD在平面APD内,∴BD⊥AD,又底面ABCD为平行四边形,∴BC⊥BD,又PD∩BD=D,且都在平面PBD内,∴BC⊥平面PDB;(2)由(1)知,PB与平面APD所成角即为∠BPD,故∠BPD=45°,又AB,∠DAB=45°,∴,,∴AP2+PC2=AC2,即AP⊥CP,∴,,又VP﹣ABC=VB﹣PAC,∴,即,解得,即点B到平面APC的距离为.20.(2020•安徽模拟)如图1,四边形PBCD是等腰梯形,BC∥PD,PB=BC=CD=2,PD=4,A为PD的中点,将△ABP沿AB折起,如图2,点M是棱PD上的点.(1)若M为PD的中点,证明:平面PCD⊥平面ABM;(2)若PC,试确定M的位置,使二面角M﹣AB﹣D的余弦值等于.【解答】解:(1)证明:由题意,AD=BC,且AD∥BC,故四边形ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铅铋冷却净化装置行业产业链分析
- 2026届北京市部分区数学七年级第一学期期末质量检测试题含解析
- 广东省金平区六校联考2026届数学九上期末质量跟踪监视试题含解析
- 2025存量房买卖合同
- 2025跨国租赁合同书范本
- 邮储银行白城市洮北区2025秋招笔试数量关系题专练及答案
- 工商银行巴彦淖尔市临河区2025秋招笔试银行特色知识专练及答案
- 工商银行安康市石泉县2025秋招笔试管理营销专练及答案
- 中国银行塔城地区乌苏市2025秋招笔试会计学专练及答案
- 邮储银行阳江市阳东区2025秋招半英文面试题库及高分答案
- DB32∕T 3751-2020 公共建筑能源审计标准
- DB51T 2975-2022气凝胶复合保温隔热材料及系统通用技术条件
- 高中音乐《学会聆听音乐》第三课时《联想与想象》 课件
- 实验,双子叶植物根类药材的鉴定课件
- 高中音乐鉴赏 第一单元 学会聆听 第一节《音乐要素及音乐语言》
- GB/T 40302-2021塑料立式软薄试样与小火焰源接触的燃烧性能测定
- 20以内加减法口算题3500道直接打印
- 走好群众路线-做好群众工作(黄相怀)课件
- 北斗卫星导航系统(全套课件208P)
- 急诊科岗位职责
- 中国监察制度史
评论
0/150
提交评论