数学苏教七年级下册期末模拟真题(比较难)_第1页
数学苏教七年级下册期末模拟真题(比较难)_第2页
数学苏教七年级下册期末模拟真题(比较难)_第3页
数学苏教七年级下册期末模拟真题(比较难)_第4页
数学苏教七年级下册期末模拟真题(比较难)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学苏教七年级下册期末模拟真题(比较难)一、选择题1.下面运算中正确的是()A.(x3)2=x5 B.(x﹣y)2=x2﹣y2C.﹣3a2b3﹣2b3a2=﹣5a2b3 D.(﹣3)2=92.下列图形中,与是同位角的是()A. B. C. D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.4.若的结果中不含项,则的值为()A. B. C. D.5.已知不等式组的解集为x>3,则m的取值范围是()A.m=3 B.m>3 C.m≥3 D.m≤36.以下说法中:(1)多边形的外角和是;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.37.一组数据排列如下:12343456745678910…按此规律,某行最后一个数是148,则此行的所有数之和是()A.9801 B.9603 C.9025 D.81008.如图,在中,,将沿直线翻折,点落在点的位置,则的度数是()A. B. C. D.二、填空题9.计算:__________.10.命题“若,则”,这个命题是_____命题.(填“真”或“假”)11.在一个顶点处用边长相等的三个正多边形进行密铺,其中两个是正方形和正六边形,则另一个必须是正_____边形.12.将12张长为a,宽为b(a>b)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为___.13.若关于x,y的方程组中x的值比y的相反数大2,则k=_____.14.在平面直角坐标系中,点、的坐标为:、,若线段最短,则的值为______.15.若一个正多边形的周长是63,且内角和,则它的边长为______.16.如图,与的大小关系为:______.17.计算:(1)(2)18.分解因式:(1)2x2-12x+18(2)a3﹣a;(3)4ab2﹣4a2b﹣b3(4)19.解方程组:(1);(2).20.解不等式组:,并在数轴上表示该不等式组的解集.三、解答题21.完成以下推理过程:如图,已知,∠C=∠F,求证:.证明:(已知)()()又(已知)()()().22.某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)23.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.24.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为.拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为.25.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,,则__________;②如图3,__________;(2)拓展应用:①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________;②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________;③如图6,、的角平分线、交于点D,已知,则__________;④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________.【参考答案】一、选择题1.C解析:C【分析】根据幂的乘方的性质,完全平方公式,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】解:A、(x3)2=x6,故本选项不符合题意;B、(x−y)2=x2−2xy+y2,故本选项不符合题意;C、−3a2b3与−2b2a3不属于同类项,不能运算,故本选项不符合题意;D、(−3)2=9,故本选项符合题意.故选:D.【点睛】本题考查了合并同类项,幂的乘方,完全平方公式的应用.理清指数的变化是解题的关键.2.B解析:B【分析】两条线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角.【详解】解:根据同位角的定义可知B选项中∠1与∠2在直线的同侧,并且在第三条直线(截线)的同旁,故是同位角.故选:B.【点睛】本题主要考查同位角的定义,准确理解同位角的定义,是解本题的关键.3.B解析:B【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x+1>-1,得:x>-1,解不等式x+2≤3,得:x≤1,∴不等式组的解集为:-1<x≤1,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.A解析:A【分析】利用多项式乘多项式运算法则将原式展开,然后合并同类项,使xy项系数为零即可解答.【详解】==,∵的结果中不含项,∴﹣m+4=0,解得:m=4,故选:A.【点睛】本题考查多项式乘多项式,熟练掌握多项式乘多项式的运算法则,会根据多项式积中不含某项的系数为零求解参数是解答的关键.5.D解析:D【分析】根据不等式组的性质即可求解.【详解】∵不等式组的解集是x>3,∴m的取值范围是m≤3故选D.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式组的求解方法.6.C解析:C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.7.A解析:A【分析】每一行的最后一个数字分别是1,4,7,10…,易得第n行的最后一个数字为1+3(n﹣1)=3n﹣2,由此建立方程求得最后一个数是148在哪一行,再由求和法计算可得.【详解】解:∵每一行的最后一个数分别是1,4,7,10…,∴第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴3n﹣2=148,解得:n=50,因此第50行最后一个数是148,∴此行的数之和为50+51+52+…+147+148==9801,故选:A.【点睛】本题考查了有理数中的规律探究问题,熟练掌握数字的规律,并灵活选用方程思想求解是解题的关键.8.D解析:D【分析】由折叠的性质得到∠D=∠B,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D.【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题9.【分析】根据整式的运算直接进行求解即可.【详解】解:;故答案为.【点睛】本题主要考查整式的运算,熟练掌握整式的运算是解题的关键.10.真【分析】根据题意判断正误即可确定是真、假命题.【详解】解:命题“若,则a=b”,这个命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是当判断一个命题为假命题时可以举出反例,难度不大.11.12【分析】正多边形的组合能否进行平面镶嵌,关键看位于同一顶点处的几个角之和能否为,若能,则说明可以进行平面镶嵌,反之,则说明不能进行平面镶嵌.【详解】正方形的一个内角度数为,正六边形的一个内角度数为,需要的多边形的一个内角度数为,需要的多边形的一个外角度数为,第三个正多边形的边数为,故答案为:12.【点睛】本题主要考查了平面镶嵌,多边形的内角和、外角和,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个角之和为;正多边形的边数为360除以一个外角度数.12.A解析:4【分析】用a,b分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的,列式计算即可求解.【详解】解:根据题意得:AD=BC=8b+a,AB=CD=2b+a,∵阴影部分的面积是大长方形面积的,∴非阴影部分的面积是大长方形面积的,∴,整理得:,即,∴,则小长方形纸片的长a与宽b的比值为4.故答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.13.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y+2,∴4(﹣y+2)+5y=10,解得:y=2,把y=2代入4x+5y=10中,得:4x+10=10,解得:x=0,则方程组的解是,∴﹣(k﹣1)×2=8,解得:k=﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解.14.B解析:-3【分析】点B是一个定点,表示直线y=3上的任意一点,根据垂线段最短确定AB与直线y=3垂直,然后即可确定a的值.【详解】解:∵点是一个定点,表示直线y=3上的任意一点,且线段AB最短,∴AB与直线y=3垂直.∴点A的横坐标与点B的横坐标相等.∴.故答案为:.【点睛】本题考查平面直角坐标系中根据点的坐标确定点的位置和垂线段最短,熟练掌握以上知识点是解题关键.15.7【分析】先根据多边形的内角和公式求出多边形的边数,再用周长63除以边数求解即可.【详解】设多边形的边数是n,则(n-2)•180°=1260°,解得n=9,∵多边形的各边相等,∴它的解析:7【分析】先根据多边形的内角和公式求出多边形的边数,再用周长63除以边数求解即可.【详解】设多边形的边数是n,则(n-2)•180°=1260°,解得n=9,∵多边形的各边相等,∴它的边长是:63÷9=7cm.故答案为7.【点睛】主要考查了多边形的内角和公式,熟记公式求出多边形的边数是解题的关键.16.>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角解析:>【分析】如图(见解析)延长的一条边,根据三角形外角的性质,即可求解【详解】解:如图延长的一条边,根据三角形外角的性质可得:故答案为>.【点睛】此题考查了三角形外角的性质,掌握三角形外角的性质并根据图形构造出角之间的关系是解题的关键.17.(1)-2;(2)【分析】(1)利用绝对值,零指数幂,负整数指数幂分别计算,再作加减法;(2)利用幂的乘方和积的乘方以及同底数幂的乘除法分别计算,再合并同类项.【详解】解:(1)==-解析:(1)-2;(2)【分析】(1)利用绝对值,零指数幂,负整数指数幂分别计算,再作加减法;(2)利用幂的乘方和积的乘方以及同底数幂的乘除法分别计算,再合并同类项.【详解】解:(1)==-2;(2)===【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(1)2(x-3)2;(2)a(a+1)(a﹣1);(3)﹣b(2a﹣b)2;(4)m(a-2)(m-1)(m+1)【分析】(1)提取公因式后,利用完全平方公式分解;(2)提取公因式,再利用平解析:(1)2(x-3)2;(2)a(a+1)(a﹣1);(3)﹣b(2a﹣b)2;(4)m(a-2)(m-1)(m+1)【分析】(1)提取公因式后,利用完全平方公式分解;(2)提取公因式,再利用平方差公式分解;(3)提取公因式后,利用完全平方公式分解;(4)提取公因式,再利用平方差公式分解.【详解】(1)2x2-12x+18解:原式=2(x2﹣6x+9)=2(x-3)2(2)解:原式=a(a2﹣1)=a(a+1)(a﹣1)(3)4ab2﹣4a2b﹣b3解:原式=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2(4)解:原式=m(a-2)(m2-1)=m(a-2)(m-1)(m+1)【点睛】本题考查了因式分解,解题的关键是:掌握基本的因式分解的步骤及方法.19.(1);(2).【分析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②×5,得13x=13,解得x=1.把x=1代入②,得解析:(1);(2).【分析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②×5,得13x=13,解得x=1.把x=1代入②,得y=1,则方程组的解为;(2)将方程组整理,得,①-②,得4y=8,解得y=2,把y=2代入②,得x=3,则方程组的解为;【点睛】本题考查了二元一次方程组的解法,解题的关键是能熟练运用加减消元法解二元一次方程组.20.-2<x≤3,见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,然后在数轴上表示其解集即可.【详解】解:解不等式①,得x>-2,解不等式②,得x≤3,∴不等式组的解集为:-解析:-2<x≤3,见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,然后在数轴上表示其解集即可.【详解】解:解不等式①,得x>-2,解不等式②,得x≤3,∴不等式组的解集为:-2<x≤3将解集在数轴上表示如解图:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题21.;同位角相等,两直线平行;;两直线平行,同位角相等;;等量代换;;同位角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠DGB,求出B解析:;同位角相等,两直线平行;;两直线平行,同位角相等;;等量代换;;同位角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠DGB,求出BC∥EF即可.【详解】证明:(已知)同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(等量代换)同位角相等,两直线平行)两直线平行,同位角相等)【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.22.当x小于5时,方案二省钱;当x=5时,两种方案费用相同;当x大于5且不大于12时时,方案一省钱【分析】先根据题意列出方案一的费用:起步价+超过3km的km数×1.6元+回程的空驶费+乘公交的费用解析:当x小于5时,方案二省钱;当x=5时,两种方案费用相同;当x大于5且不大于12时时,方案一省钱【分析】先根据题意列出方案一的费用:起步价+超过3km的km数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km的km数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小.【详解】方案一的费用:7+(x-3)×1.6+0.8(x-3)+4×2=7+1.6x-4.8+0.8x-2.4+8=7.8+2.4x,方案二的费用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;②方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案二省钱;③方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案一省钱.【点睛】此题考查了应用类问题,解答本题的关键是根据题目所示的收费标准,列出x的关系式,再比较.23.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【分析】(1)设每辆A型车、B型车都装满货物一次可以解析:(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:解得答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=∵a、b都是整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.24.解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论