(完整版)苏教版七年级下册期末数学真题模拟题目经典套题解析_第1页
(完整版)苏教版七年级下册期末数学真题模拟题目经典套题解析_第2页
(完整版)苏教版七年级下册期末数学真题模拟题目经典套题解析_第3页
(完整版)苏教版七年级下册期末数学真题模拟题目经典套题解析_第4页
(完整版)苏教版七年级下册期末数学真题模拟题目经典套题解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)苏教版七年级下册期末数学真题模拟题目经典套题解析一、选择题1.下列运算正确的是()A.(x+3)2=x2+9 B.a2•a3=a6C.(x﹣9)(x+9)=x2﹣9 D.(a2)3=a6答案:D解析:D【分析】直接根据完全平方公式、平方差公式,同底数幂的乘法和幂的乘方计算法则求解判断即可.【详解】解:A、(x+3)2=x2+6x+9,故原题计算错误;B、a2•a3=a5,故原题计算错误;C、(x﹣9)(x+9)=x2﹣81,故原题计算错误;D、(a2)3=a6,故原题计算正确;故选D.【点睛】本题主要考查了完全平方公式、平方差公式,同底数幂的乘法和幂的乘方计算,解题的关键在于能够熟练掌握相关知识进行求解.2.如图,下列说法不正确的是()A.和是同旁内角 B.和是内错角C.和是同位角 D.和是同旁内角答案:B解析:B【分析】根据同旁内角、内错角、同位角的概念判断即可.【详解】解:如图,A.∠1和∠A是MN与AN被AM所截成的同旁内角,说法正确,故此选项不符合题意;B.∠2和∠B不是内错角,说法错误,故此选项符合题意;C.∠3和∠A是MN与AC被AM所截成的同位角,说法正确,故此选项不符合题意;D.∠4和∠C是MN与BC被AC所截成的同旁内角,说法正确,故此选项不符合题意;故选:B.【点睛】此题考查了同旁内角、内错角、同位角,熟记同旁内角、内错角、同位角的概念是解题的关键.3.不等式2x-1≤x+1的解集在数轴上表示正确的是()A. B. C. D.答案:B解析:B【分析】不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式移项合并得:x≤2,表示在数轴上,如图所示:故选:B.【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.4.已知,为任意数,则下列不等式总是成立的是()A. B. C. D.答案:B解析:B【分析】根据不等式的性质,不等式两边同加同减一个实数,不等号方向不变,同乘或同除大于0的数,不等号方向不变,同乘或同除一个负数,不等号方向改变,可得答案.【详解】解:A、两边都加c,不等号的方向不变,故A不符合题意;B、两边都减c,不等号的方向不变,故B符合题意;C、c=0时,ac=bc,故C不符合题意;D、c=0时,a|c|=b|c|,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,利用不等式的性质是解题关键.5.若关于的不等式组有且只有两个整数解,则的取值范围是()A. B.C. D.答案:D解析:D【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.【详解】解:,解不等式①,得,解不等式②,得,∴不等式组的解集为,∵不等式组有且只有两个整数解,∴,∴;故选:D.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.6.下列四个命题:①两直线平行,内错角相等;②若a>0,则a+3>0;③两个角相等,它们一定是对顶角;④二元一次方程的解为其中为真命题的个数是()A.1 B.2 C.3 D.4答案:B解析:B【分析】根据平行线的性质,不等式的性质,对顶角的定义及方程解得定义分别判断即可得解.【详解】解:两直线平行,内错角相等,故①正确;若a>0,则a+3>0,故②正确;两个角相等,它们不一定是对顶角,故③不正确;是二元一次方程的一个解,二元一次方程的解由无数种,不唯一,故④不正确.因此真命题有①②,共2个,故选:B【点睛】本题主要考查了平行线的性质,不等式的性质,对顶角的定义及方程解得定义及命题真假的.正确的掌握有关的性质和定义是解题的关键.7.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.500 B.501 C.1000 D.1002答案:B解析:B【分析】根据题意列出方程求出最后一个数,除去一半即为n的值.【详解】根据题意可得第n个数为2n,则后三个数分别为2n﹣4,2n﹣2,2n,∴2n﹣4+2n﹣2+2n=3000,解得n=501.故选:B.【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.8.已知△PQR是直角三角形,∠R为直角,线段RQ比线段PR短,M为线段PQ的中点,N为线段QR的中点,S是三角形内部的点,线段MN比线段MS长,图中,符合以上表述的是()A. B. C. D.答案:D解析:D【分析】根据点所在的位置和线段的长短进行逐一判断即可.【详解】解:∵△PQR是直角三角形,∠R为直角,线段RQ比线段PR短,M为线段PQ的中点,N为线段QR的中点,S是三角形内部的点,线段MN比线段MS长,∴图中,符合以上表述的是D选项,故选D.【点睛】本题主要考查了点的位置,线段的长短,解题的关键在于能够根据题意进行求解.二、填空题9.计算:a•3a=______.解析:3a2【分析】根据单项式乘以单项式的运算法则即可求出答案.【详解】解:原式=3a2,故答案为:3a2.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.10.命题“如果两个角是直角,那么它们相等”的逆命题是_____命题(填“真”或“假”).解析:假【分析】先交换原命题的题设与结论部分得到其逆命题,然后判断逆命题的真假.【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是“如果两个角相等,那么它们是直角”,此逆命题是假命题.故答案为假.【点睛】本题考查了命题与定理,逆命题.判断一件事情的语句,叫做命题.许多命题都是由题设与结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.在一个多边形中,小于112°的内角最多有___个.解析:5【分析】由多边形的内角小于112°,可得外角大于68°,再根据多边形的外角和为360°进行判断即可.【详解】解:由于多边形的内角小于112°,所以这个多边形的外角要大于180°-112°=68°,而多边形的外角和为360°,所以360°÷68°==(个),∴最多有5个,故答案为:5.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为360°是解决问题的关键.12.将12张长为a,宽为b(a>b)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为___.答案:A解析:4【分析】用a,b分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的,列式计算即可求解.【详解】解:根据题意得:AD=BC=8b+a,AB=CD=2b+a,∵阴影部分的面积是大长方形面积的,∴非阴影部分的面积是大长方形面积的,∴,整理得:,即,∴,则小长方形纸片的长a与宽b的比值为4.故答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.13.关于x的方程组的解满足,则m的取值范国是_______.解析:m>-2【分析】两个方程相减得x-y=m+2,由x>y知m+2>0,解之可得答案.【详解】解:两个方程相减得x-y=m+2,∵x>y,∴x-y>0,则m+2>0,解得m>-2,故答案为:m>-2.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握等式的基本性质,并结合已知条件得出关于m的不等式.14.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为_____.解析:56米2.【分析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可得到草地的面积,进而得出道路的面积.【详解】将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.∴道路的面积为20×10﹣144=56米2故答案为56米2.【点睛】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.15.如图1,用6个全等的正六边形进行拼接,使相等的两个正六边形有一条公共边,围成一圈后中间形成一个正六边形.如图2,用个全等的正五边形进行拼接后,中间形成一个正边形,则的值等于_____.答案:10【分析】先根据正五边形求得正边形的一个内角的度数,根据边形的内角和为即可得边数.【详解】正五边形的每一个内角为则正五边形围成的多边形的一个内角的度数为:解得故答案为:【点睛】解析:10【分析】先根据正五边形求得正边形的一个内角的度数,根据边形的内角和为即可得边数.【详解】正五边形的每一个内角为则正五边形围成的多边形的一个内角的度数为:解得故答案为:【点睛】本题考查了正多边形的内角的应用,掌握多边形的内角和定理是解题的关键.16.如图,已知AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,∠BCE=40°,则∠ADB=_____.答案:100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB解析:100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是ABC的角平分线,∠BAC=60°.∴∠BAD=∠CAD=∠BAC=30°,∵CE是ABC的高,∴∠CEA=90°.∵∠CEA+∠BAC+∠ACE=180°.∴∠ACE=30°.∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°.∴∠ADB=40°+30°+30°=100°.故答案为:100°.【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.17.计算:(1);(2);(3).答案:(1)1;(2);(3)【分析】(1)根据零指数幂、负指数幂和幂的运算公式计算即可;(2)根据整式乘除的运算性质计算即可;(3)先根据多项式乘以多项式展开,在合并同类项即可;【详解】(1解析:(1)1;(2);(3)【分析】(1)根据零指数幂、负指数幂和幂的运算公式计算即可;(2)根据整式乘除的运算性质计算即可;(3)先根据多项式乘以多项式展开,在合并同类项即可;【详解】(1)原式,,;(2)原式,,;(3)原式,,;【点睛】本题主要考查了实数的混合运算、幂的运算性质、整式乘除运算,准确计算是解题的关键.18.因式分解:(1)(2)n2(m﹣2)+4(2﹣m)答案:(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4解析:(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4(2﹣m),=,=.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底.19.解方程组:(1).(2).答案:(1);(2)【分析】(1)用加减法求解.(2)用加减法求解.【详解】解:(1),②﹣①得x=﹣1.把x=﹣1代入①得﹣1+y=5,解得y=6.所以,这个方程组的解为;(2),①解析:(1);(2)【分析】(1)用加减法求解.(2)用加减法求解.【详解】解:(1),②﹣①得x=﹣1.把x=﹣1代入①得﹣1+y=5,解得y=6.所以,这个方程组的解为;(2),①×2得4a﹣2b=16③,③+②得7a=21,解得a=3,把a=3代入①得2×3﹣b=8,解得b=﹣2,所以,这个方程组的解为.【点睛】本题主要考查加减法解二元一次方程,掌握加减消元法、代入消元法是解题的关键20.解不等式组,并把解集在数轴上表示出来.答案:不等式组的解集为,数轴上表示见解析【分析】先求出每个不等式的解,然后根据“同大取大,同小取小,大小小大中间找,大大小小找不到”得到解集,最后表示在数轴上即可.【详解】解:,解不等式①,得:解析:不等式组的解集为,数轴上表示见解析【分析】先求出每个不等式的解,然后根据“同大取大,同小取小,大小小大中间找,大大小小找不到”得到解集,最后表示在数轴上即可.【详解】解:,解不等式①,得:,解不等式②,得:,把不等式组的解集在数轴上表示出来,如图所示:∴不等式组的解集为.【点睛】本题考查了解一元一次不等式组,能够正确求出每个不等式的解集是基础,熟练掌握取不等式组的解集是关键.三、解答题21.如图,在△ABC中,AB=AC,点D、E分别在AC及其延长线上,点B,F分别在AE两侧,连接CF,已知AD=EC,BC=DF,BC∥DF.(1)AB∥EF吗?为什么?(2)若CE=CF,FC平分∠DFE,求∠A的度数.答案:(1)AB∥EF,理由见解析;(2)36°【分析】(1)先由AD=EC,得AC=ED,再由平行线的性质得∠ACB=∠EDF,最后根据SAS定理证明△ABC≌△EFD,由全等三角形的性质得出∠A=解析:(1)AB∥EF,理由见解析;(2)36°【分析】(1)先由AD=EC,得AC=ED,再由平行线的性质得∠ACB=∠EDF,最后根据SAS定理证明△ABC≌△EFD,由全等三角形的性质得出∠A=∠E,则可得出结论;(2)证明∠EDF=∠EFD=2∠E,再根据三角形的内角和定理求得∠E,便可得∠A.【详解】解:(1)AB∥EF.理由:∵AD=EC,∴AC=ED,∵BC∥DF,∴∠ACB=∠EDF,在△ABC和△EFD中,,∴△ABC≌△EFD(SAS),∴∠A=∠E,∴AB∥EF;(2)∵△ABC≌△EFD,∴AB=EF,AC=ED,∵AB=AC,∴ED=EF,∴∠EDF=∠EFD,∵CE=CF,∴∠CEF=∠CFE,∵CF平分∠DFE,∴∠EFD=2∠CFE=2∠E,∵∠EDF+∠EFD+∠E=180°,∴2∠E+2∠E+∠E=180°,∴∠E=36°,∵△ABC≌△EFD,∴∠A=∠E=36°.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,角平分线的性质,解题的关键是证明△ABC≌△EFD.22.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?答案:(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关解析:(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:,解得:.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天34167023.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_米(直接写出答案).答案:(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元解析:(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由是正整教分情况求出b的值.【详解】解:(1)设A款瓷砖单价x元,B款单价y元,则有,解得,答:A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:,解得a=1.由题可知,是正整教.设(k为正整数),变形得到,当k=1时,,故合去),当k=2时,,故舍去),当k=3时,,当k=4时,,答:B款瓷砖的长和宽分别为1,或1,.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.答案:[习题回顾]证明见解析;[变式思考]相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考]相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线

AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.25.已知E、D分别在的边、上,C为平面内一点,、分别是、的平分线.(1)如图1,若点C在上,且,求证:;(2)如图2,若点C在的内部,且,请猜想、、之间的数量关系,并证明;(3)若点C在的外部,且,请根据图3、图4直接写出结果出、、之间的数量关系.答案:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论