




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年人教版中学七7年级下册数学期末质量检测试卷及解析一、选择题1.的算术平方根是()A.3 B.﹣3 C.﹣9 D.92.下列图案可以由部分图案平移得到的是()A. B. C. D.3.下列各点在第二象限的是()A. B. C. D.4.下列命题中属假命题的是()A.两直线平行,内错角相等B.a,b,c是直线,若a⊥b,b⊥c,则a⊥cC.a,b,c是直线,若ab,bc,则acD.无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5.如图,已知直线、被直线所截,,E是直线右边任意一点(点E不在直线,上),设,.下列各式:①,②,③,④,的度数可能是()A.①②③ B.①②④ C.①③④ D.①②③④6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是()A.3 B.4 C.5 D.67.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为()A.120° B.135° C.150° D.160°8.如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90°移动2个单位长度到达点P2;然后逆时针转向90°,移动3个单位长度到达点P3;然后逆时针转向90°,移动4个单位长度到达点P4;…,如此继续转向移动下去.设点Pn(xn,yn),n=1,2,3,…,则x1+x2+x3+…+x2021=()A.1 B.﹣1010 C.1011 D.2021九、填空题9.计算:﹣=_____.十、填空题10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.十一、填空题11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.十三、填空题13.如图,将长方形沿折叠,使点C落在边上的点F处,若,则___º.十四、填空题14.定义一种新运算“”规则如下:对于两个有理数,,,若,则______十五、填空题15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__.十六、填空题16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An,则A2021的坐标是___________.十七、解答题17.(1)(2)十八、解答题18.求下列各式中的值:(1);(2).十九、解答题19.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠3+∠4=180°,试说明∠1=∠2(请通过填空完善下列推理过程)解:∵∠3+∠4=180°(已知),∠FHD=∠4().∴∠3+∠FHD=180°(等量代换).∴FG∥BD().∴∠1=(两直线平行,同位角相等).∵BD平分∠ABC,∴∠ABD=(角平分线的定义).∴∠1=∠2(等量代换).二十、解答题20.如图①,在平面直角坐标系中,点、在轴上,,,.(1)写出点、、的坐标.(2)如图②,过点作交轴于点,求的大小.(3)如图③,在图②中,作、分别平分、,求的度数.二十一、解答题21.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若的整数部分为,小数部分为,求的值.(2)已知:,其中是整数,且,求的值.二十二、解答题22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.二十四、解答题24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.二十五、解答题25.如图,在中,与的角平分线交于点.(1)若,则;(2)若,则;(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则.【参考答案】一、选择题1.A解析:A【分析】先计算,再计算的算术平方根即可.【详解】,的算术平方根为故选A【点睛】本题考查了求一个数的算术平方根,先计算是解题的关键.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C.【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.C【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.在第一象限,故本选项不合题意;B.在第四象限,故本选项不合题意;C.在第二象限,故本选项符合题意.D.在第三象限,故本选项不合题意;故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.B【分析】根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上的点与实数一一对应对D进行判断.【详解】解:A、两直线平行,内错角相等,所以A选项为真命题;B、a,b,c是直线,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;C、a,b,c是直线,若a∥b,b∥c,则a∥b,所以C选项为真命题;D、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D选项为真命题.故选:B.【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可.5.A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)当点E在CD的下方时,同理可得,∠AEC=α-β.综上所述,∠AEC的度数可能为β-α,α+β,α-β.即①α+β,②α-β,③β-α,都成立.故选A.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:,1,0,故①正确;平方根等于本身的数有:0,故②错误;两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误;实数与数轴上的点一一对应,故④正确;是无理数,不是分数,故⑤错误;从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A.【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念.7.D【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.【详解】解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3,∴∠3=45°-25°=20°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-20°=160°,故选:D.【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、、的值分别为:1,1,,,3,3,,;,,,,,,,,,故选:A.【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.九、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.十、填空题10.(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).【点解析:(-3,-2)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).【点睛】本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.十一、填空题11.﹣【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.十二、填空题12.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.十三、填空题13.23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=44°,∠B=90°,∴∠BEF=46°,∴∠DEC=(180°-46°)=67°,∴∠EDC=90°-∠DEC=23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x)⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得解析:【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x)⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:,故答案为.【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键.十五、填空题15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.【详解】解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.【详解】解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.十七、解答题17.(1);(2).【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案.【详解】解:(1)(2)【点睛】解析:(1);(2).【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案.【详解】解:(1)(2)【点睛】本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键.十八、解答题18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.十九、解答题19.对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,解析:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,根据角平分线的定义得出∠ABD=∠2即可.【详解】解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等),∴∠3+∠FHD=180°(等量代换),∴FG∥BD(同旁内角互补,两直线平行),∴∠1=∠ABD(两直线平行,同位角相等),∵BD平分∠ABC,∴∠ABD=∠2(角平分线的定义),∴∠1=∠2(等量代换),故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2.【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.二十、解答题20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出,.【详解】解:(1)依题意得:,,;(2)∵,∴,∴;(3)∵,∴,∵,分别平分,,∴,过点作,则,,∴.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键.二十一、解答题21.(1)6;(2)12−【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.【详解】解析:(1)6;(2)12−【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.【详解】解:(1)∵3<<4,∴a=3,b=-3∴=+-3-=6(2)∵1<<2.又∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=−1.∴x−y=11−(−1)=12−【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键.二十二、解答题22.不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2xcm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.二十三、解答题23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.二十四、解答题24.(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2023学年上海华东师范大学二附中高一(上)期中考试语文试题
- 肥胖与癌症关联性及体重管理
- 互助养老合同(标准版)
- 2025-2026学年度导游资格考试经典例题(A卷)附答案详解
- 综合楼六类标准综合布线工程招标文件
- 职称计算机模拟题库及参考答案详解【A卷】
- 2025年绿色建筑材料市场推广与政策支持下的绿色建筑市场风险防控与应对策略研究报告
- 2025年工业互联网平台云计算资源动态分配在智能供应链管理中的应用策略研究报告
- 中小学假期安全教育班会怎么开展(34篇)
- 中小学学校管理制度(30篇)
- 部编版六年级语文上册重点难点解析
- 电力监理劳务合同范本
- 2025河北工勤人员技师考试消毒员训练题及答案
- 2025年供水管网改造工程可行性研究报告
- 肖婷民法总则教学课件
- 特产专卖店创业经营计划书
- 砂石料物资供应服务保障方案
- 顺丰转正考试题库及答案
- 2025至2030玉米糖浆行业产业运行态势及投资规划深度研究报告
- 2025年秋招:邮储银行笔试真题及答案(可下载)
- 走访礼品管理办法
评论
0/150
提交评论