深圳深圳市福田区梅山中学中考数学期末几何综合压轴题模拟汇编_第1页
深圳深圳市福田区梅山中学中考数学期末几何综合压轴题模拟汇编_第2页
深圳深圳市福田区梅山中学中考数学期末几何综合压轴题模拟汇编_第3页
深圳深圳市福田区梅山中学中考数学期末几何综合压轴题模拟汇编_第4页
深圳深圳市福田区梅山中学中考数学期末几何综合压轴题模拟汇编_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深圳深圳市福田区梅山中学中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题1.问题发现:(1)正方形ABCD和正方形AEFG如图①放置,AB=4,AE=2.5,则=___________.问题探究:(2)如图②,在矩形ABCD中,AB=3,BC=4,点P在矩形的内部,∠BPC=135°,求AP长的最小值.问题拓展:(3)如图③,在四边形ABCD中,连接对角线AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,则对角线BD是否存在最大值?若存在,求出最大值;若不存在,请说明理由.2.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积之间的关系问题”进行了以下探究:类比探究:(1)如图2,在中,为斜边,分别以为直径,向外侧作半圆,则面积之间的关系式为_____________;推广验证:(2)如图3,在中,为斜边,分别以为边向外侧作,,满足,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用:(3)如图4,在五边形中,,点在上,,求五边形的面积.3.《函数的图象与性质》拓展学习展示:(问题)如图①,在平面直角坐标系中,抛物线:与轴相交于,两点,与轴交于点,则______,______.(操作)将图①中抛物线沿方向平移长度的距离得到拋物线,在轴左侧的部分与在轴右侧的部分组成的新图象记为,如图②.请直接写出图象对应的函数解析式.(探究)在图②中,过点作直线平行于轴,与图象交于,两点,如图③.求出图象在直线上方的部分对应的函数随的增大而增大时的取值范围.(应用)是抛物线对称轴上一个动点,当是直角三角形时,直接写出点的坐标.4.(问题发现)(1)如图1所示,在中,,,点在边上,且,将线段绕点顺时针旋转90°得到线段,连接、,的值为______;(类比探究)(2)如图2所示,在(1)的条件下,点为的中点,,将线段绕点顺时针旋转90°得到,连接,则的值会发生改变吗?说明你的理由;(拓展延伸)(3)如图3所示,在钝角中,,,点在边的延长线上,,连接.将线段绕着点顺时针旋转,旋转角,连接,则______(请用含有,的式子表示).5.(教材呈现)下面是华师版八年级下册教材第89页的部分内容.如图,G,H是平行四边形ABCD对角线AC上的两点,且AG=CH,E,F分别是边AB和CD的中点求证:四边形EHFG是平行四边形证明:连接EF交AC于点O∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又∵E,F分别是AB,CD的中点∴AE=CF又∵AB∥CD∴∠EAO=∠FCO又∵∠AOE=∠COF∴△AOE≌△COF请补全上述问题的证明过程.(探究)如图①,在△ABC中,E,O分别是边AB、AC的中点,D、F分别是线段AO、CO的中点,连结DE、EF,将△DEF绕点O旋转180°得到△DGF,若四边形DEFG的面积为8,则△ABC的面积为.(拓展)如图②,GH是正方形ABCD对角线AC上的两点,且AG=CH,GH=AB,E、F分别是AB和CD的中点.若正方形ABCD的面积为16,则四边形EHFG的面积为.6.在矩形ABCD中,(k为常数),点P是对角线BD上一动点(不与B,D重合),将射线PA绕点P逆时针旋转90°与射线CB交于点E,连接AE.(1)特例发现:如图1,当k=1时,将点P移动到对角线交点处,可发现点E与点B重合,则=,∠AEP=;当点P移动到其它位置时,∠AEP的大小(填“改变”或“不变”);(2)类比探究:如图2,若k≠1时,当k的值确定时,请探究∠AEP的大小是否会随着点P的移动而发生变化,并说明理由;(3)拓展应用:当k≠1时,如图2,连接PC,若PC⊥BD,,PC=2,求AP的长.7.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD是正方形,四边形BEDF是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE.求证:AE⊥CE.”并展示了如下的证明方法:证明:如图3,分别连接AC,BD,EF,AF.设AC与BD相交于点O.∵四边形ABCD是正方形,∴OA=OC=AC,OB=OD=BD,且AC=BD.又∵四边形BEDF是矩形,∴EF经过点O,∴OE=OF=EF,且EF=BD.∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.8.综合与实践:利用矩形的折叠开展数学活动,探究体会图形在轴对称,旋转等变换过程中的变化,及其蕴含的数学思想和方法.动手操作:如图①,矩形纸片ABCD的边AB=2,将矩形纸片ABCD对折,使点A与点D重合,点B与点C重合,折痕为EF,然后展开,EF与AC交于点H;如图②,将矩形ABCD沿过点A的直线折叠,使点B落在对角线AC上,且点B与点H重合,展开图形,折痕为AG,连接GH;若在图①中连接BH,得到如图③,点M是线段BH上的动点,点N是线段AH上的动点,连接AM,MN,且∠AMN=∠ABH;若在图②中连接BH,交折痕AG于点Q,隐去其它线段,得到如图④.解决问题:(1)在图②中,∠ACB=,BC=,=,与△ABG相似的三角形有个;(2)在图②中,AH2=AE·(从图②中选择一条线段填在空白处),并证明你的结论;(3)在图③中,△ABH为三角形,设BM为x,则NH=(用含x的式子表示);拓展延伸:(4)在图④中,将△ABQ绕点B按顺时针方向旋转α(0°≤α≤180°),得到△A′BQ′,连接DQ′,则DQ′的最小值为,当tan∠CBQ′=时,△DBQ′的面积最大值为.9.已知:如图1所示将一块等腰三角板BMN放置与正方形ABCD的重合,连接AN、CM,E是AN的中点,连接BE.(观察猜想)(1)CM与BE的数量关系是________;CM与BE的位置关系是________;(探究证明)(2)如图2所示,把三角板BMN绕点B逆时针旋转,其他条件不变,线段CM与BE的关系是否仍然成立,并说明理由;(拓展延伸)(3)若旋转角,且,求的值.10.等腰△ABC,AB=AC,∠BAC=120°,AF⊥BC于F,将腰AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过C作CE垂直于直线BB′,垂足为E,连接CB′.(1)问题发现:如图1,当时,的度数为_______;连接EF,则的值为________.(2)拓展探究:当,且时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②解决问题:当A,E,F三点共线时,请直接写出的值.11.如图1,已知直角三角形,,,点是边上一点,过作于点,连接,点是中点,连接,.(1)发现问题:线段,之间的数量关系为______;的度数为______;(2)拓展与探究:若将绕点按顺时针方向旋转角,如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若绕点旋转的过程中,当点落到边上时,边上另有一点,,,连接,请直接写出的长度.12.(问题探究)课堂上老师提出了这样的问题:“如图①,在中,,点是边上的一点,,求的长”.某同学做了如下的思考:如图②,过点作,交的延长线于点,进而求解,请回答下列问题:(1)___________度;(2)求的长.(拓展应用)如图③,在四边形中,,对角线相交于点,且,,则的长为_____________.13.(问题情境)(1)如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是;(类比探究)(2)如图2,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE.判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;(拓展提升)(3)如图3,在(2)的条件下,连接BG,则2BG+BE的最小值为.14.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.15.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE.填空:①则的值为______;②∠EAD的度数为_______.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出的值及∠EAD的度数;(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.16.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A、B、C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD、CD.求证:四边形ABCD是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;(升华运用)(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F.若CD=6,DF=2,求AF的长.17.(1)问题情境:如图1,已知等腰直角中,,,是上的一点,且,过作于,取中点,连接,则的长为_______(请直接写出答案)小明采用如下的做法:延长到,使,连接,为中点,为的中点,是的中位线……请你根据小明的思路完成上面填空;(2)迁移应用:将图1中的绕点作顺时针旋转,当时,试探究、、的数量关系,并证明你的结论.(3)拓展延伸:在旋转的过程中,当、、三点共线时,直接写出线段的长.18.(1)观察发现:如图1,在中,,,点是的平分线上一点,将线段绕点逆时针旋转90°到,连结、,交于.填空:①线段与的数量关系是_________;②线段与的位置关系是_________.(2)拓展探究:如图2,在中,,,点是边的中点,将绕点逆时针旋转到,连结、,交于.(1)中的结论是否仍然成立?请说明理由.(3)拓展应用:如图3,在中,,,,的平分线交于,点是射线上的一点,将绕点顺时针旋转60°到,连结、、,与相交于,若以、、为顶点的三角形与全等,直接写出的长.19.[探索发现](1)如图①,△ABC与△ADE为等腰三角形,且两顶角∠ABC=∠ADE,连接BD与CE,则△ABD与△ACE的关系是;[操作探究](2)在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点,在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你探究,当点E在直线AD上时,如图②所示,连接CE,判断直线CE与直线AB的位置关系,并说明理由.[拓展应用](3)在(2)的应用下,请在图③中画出△BPE,使得点E在直线AD的右侧,连接CE,试求出点P在线段AD上运动时,AE的最小值.20.如图1,已知和均为等腰直角三角形,点、分别在线段、上,.(1)观察猜想:如图2,将绕点逆时针旋转,连接、,的延长线交于点.当的延长线恰好经过点时,点与点重合,此时,①的值为______;②∠BEC的度数为______度;(2)类比探究:如图3,继续旋转,点与点不重合时,上述结论是否仍然成立,请说明理由;(3)拓展延伸:若.,当所在的直线垂直于时,请你直接写出线段的长.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1);(2)AP的最小值为;(3)存在,BD的最大值为6+6【分析】(1)连接AC、AF、DG、CF,证△ADG∽△ACF,根据线段比例关系可求;(2)以BC为斜边作等腰直角三角形BOC,以解析:(1);(2)AP的最小值为;(3)存在,BD的最大值为6+6【分析】(1)连接AC、AF、DG、CF,证△ADG∽△ACF,根据线段比例关系可求;(2)以BC为斜边作等腰直角三角形BOC,以O为圆心BO为半径画圆,则P的运动轨迹在矩形ABCD内的劣弧BC上,连接AO交弧BC于点P,此时AP最小,根据给出数据求值即可;(3)以AB为斜边向下做等腰直角三角形AEB,连接CE,根据△DAB∽△CAE,得出BD=CE,以AB为斜边向上做等腰直角三角形AOB,以O为圆心OA为半径画圆,根据C点的轨迹求出CE最大值,即求出BD最大值.【详解】解:(1)如图①,连接AC、AF、DG、CF,在正方形ABCD和正方形AEFG中,AB=4,AE=2.5,∴AC=AB,AF=AE,AG=AE=2.5,AD=AB=4,∴,又∵∠DAG=∠DAC-∠GAC=45°-∠GAC,∠CAF=∠GAF-∠GAC=45°-∠GAC,∴∠DAG=∠CAF,∴△DGA∽△CFA,∴,故答案为;(2)如图②,以BC为斜边作等腰直角三角形BOC,以O为圆心BO为半径画圆,则∠BPC作为圆周角刚好是135°,∴P的运动轨迹在矩形ABCD内的劣弧BC上,连接AO交弧BC于点P,此时AP最小,作OE垂直AB延长线于点E,∵△BOC为等腰直角三角形,BC=4,∴OB=OC=BC=×4=2,∠OBC=45°,∴∠OBE=90°-∠OBC=90°-45°=45°,又∵OE⊥AE,∴△BEO为等腰直角三角形,∴BE=OE=OB=×2=2,又∵AB=3,∴AE=AB+BE=3+2=5,∴,∵OP=OB=2,∴AP=AO-OP=-2,即AP的最小值为-2;(3)存在,如图3,以AB为斜边向下做等腰直角三角形AEB,连接CE,则∠EAB=45°,,∵AC=AD,∠ACD=90°,∴DAC=45°,,∴,∠DAB=∠CAE=45°,∴△DAB∽△CAE,∴,∴BD=CE,∴当CE最大时,BD取最大值,以AB为斜边向上做等腰直角三角形AOB,以O为圆心OA为半径画圆,∵∠AOB=90°,∠ACB=45°,∴点C在优弧AB上,由图知当C在OE延长线C'位置时C'E有最大值,此时C'E=OE+OC',∵AB=6,△AOB和△AEB都是以AB为斜边的等腰直角三角形,∴四边形AOBE为正方形,∴OE=AB=6,OC'=OA=AB=3,∴CE的最大值为6+3,∵BD=CE,∴BD的最大值为×(6+3)=6+6.【点睛】本题主要考查了图形的变换,三角形相似,等腰直角三角形,正方形,圆周角,圆心角等知识点,熟练掌握并灵活运用这些知识点是解题的关键.2.(1)S1+S2=S3,(2)成立,证明见解析,(3)【分析】(1)分别写出三个半圆的面积,再利用勾股定理转化即可.(2)先证明三个三角形相似,再计算出三个三角形的面积,即可得出结论.(3)解析:(1)S1+S2=S3,(2)成立,证明见解析,(3)【分析】(1)分别写出三个半圆的面积,再利用勾股定理转化即可.(2)先证明三个三角形相似,再计算出三个三角形的面积,即可得出结论.(3)先添加辅助线,在第二问的思路下,先证明三个三角形相似,得出三个三角形的面积关系,再利用30°、45°的直角三角形计算出相应的边,计算出五边形的面积即可.【详解】解:(1)设AB=b,AC=a,BC=c.则有:所以在Rt△ABC中,有a2+b2=c2,且故答案为:S1+S2=S3(2)∵∴设AB、AC、BC边上的高分别为h1,h2,h3∴,设AB=b,AC=a,BC=c则∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)连接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,则AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=则PD=1+∴=所以五边形的面积为:【点睛】本题考查勾股定理、与勾股定理有关的图形问题、相似三角形.是中考的常考知识.3.【问题】,1;【操作】当时,,当时,;【探究】或;【应用】点的坐标为:或【分析】问题:即可求解;操作:抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平解析:【问题】,1;【操作】当时,,当时,;【探究】或;【应用】点的坐标为:或【分析】问题:即可求解;操作:抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,即可求解;探究:将点C的坐标代入两个函数表达式,求出G1、G2的顶点坐标,即可求解;应用:证明∠EPN=∠MDP,利用tan∠EPN=tan∠MDP,即可求解.【详解】解:问题:,解得:,,故答案为:,1;操作:抛物线沿方向平移长度的距离得到抛物线,相当于抛物线向左平移3个单位,向上平移个单位,:,:,当时,,当时,;探究:点的坐标为.当时,,解得:,,∴,当时,,解得:,,∴,∵,,∴抛物线的顶点为,抛物线的顶点为,∴或时,函数随的增大而增大;应用:如图,过点作轴的平行线交过点与轴的垂线于点,交过点与轴的垂直的直线于点,设点,则,,,,∵,,∴,∴,即,即,解得:,故点的坐标为:或.【点睛】本题考查的是二次函数综合运用,涉及解直角三角形、图形的平移等,具有一定的综合性,关键在于根据题意作出图形进行解答.4.(1);(2)BE+BD的值不会发生改变,理由见解答;(3)2k•sin【分析】(1)只要证明,即可解决问题;(2)如图2中,作交于,过点作交于.利用(1)中结论即可解决问题;(3)如图③中解析:(1);(2)BE+BD的值不会发生改变,理由见解答;(3)2k•sin【分析】(1)只要证明,即可解决问题;(2)如图2中,作交于,过点作交于.利用(1)中结论即可解决问题;(3)如图③中,作交的延长线于,作于.只要证明,可证,即可解决问题.【详解】解:(1)如图1中,,,,,,,,,,,,故答案为:.(2)的值不会发生改变,理由如下:作交于,过点作交于,,,,,,是等腰直角三角形,,,,是等腰直角三角形,,,,由(1),知,,,,为边上的中点,,,,,,,,,,;(3)如图3中,作交的延长线于,作于.,,,,,,,,,,,,,,,,,,..故答案为:.【点睛】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5.教材呈现:见解析;探究:16;拓展:4【分析】教材呈现:先根据三角形全等的性质可得,再根据线段的和差可得,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得,再根据等底同高可得,从而可解析:教材呈现:见解析;探究:16;拓展:4【分析】教材呈现:先根据三角形全等的性质可得,再根据线段的和差可得,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得,再根据等底同高可得,从而可得,然后根据三角形中位线定理即可得;拓展:先根据正方形的性质和面积可得,从而可得,再根据等腰直角三角形和勾股定理可得,然后利用三角形的面积公式可得,最后利用平行四边形的性质即可得.【详解】解:教材呈现:补充完整证明过程如下:∴OE=OF,OA=OC,又∵AG=CH,∴OA-AG=OC-CH,即OG=OH,∴四边形EHFG是平行四边形;探究:如图,连接OE,BO,由旋转的性质得:,点O是AC的中点,点D是AO的中点,点F是CO的中点,,由等底同高得:,,又点E是AB的中点,点O是AC的中点,∴S△BEO=S△AEO=4,∴S△ABO=S△BEO+S△AEO=8,,故答案为:16;拓展:如图,过点E作于点O,四边形ABCD是面积为16的正方形,,在Rt△ABC中,由勾股定理得,∵AC为正方形的对角线,∴∠EAO=45°,点E是AB的中点,,∵,∴,∴AO=EO,在Rt△AEO中由勾股定理的AO2+EO2=AE2,即2OE2=4解得,,,,由教材呈现可知,四边形EHFG是平行四边形,则四边形EHFG的面积为,故答案为:.【点睛】本题考查了旋转的性质、三角形中线性质、平行四边形的判定与性质、正方形的性质,等腰直角三角形性质,勾股定理等知识点,较难的是拓展,通过作辅助线,构造等腰直角三角形是解题关键.6.(1)1,45°,不变;(2)∠AEP的大小不变,理由见解析;(3).【分析】(1)当点P为对角线交点时,根据正方形的性质可得出结论,当点P移动到其它位置时,过点P分别作AB,BC的垂线,垂足分解析:(1)1,45°,不变;(2)∠AEP的大小不变,理由见解析;(3).【分析】(1)当点P为对角线交点时,根据正方形的性质可得出结论,当点P移动到其它位置时,过点P分别作AB,BC的垂线,垂足分别为M,N.证△PAM≌△PEN,可得∠AEP的大小不变;(2)类似(1),过点P分别作AB,BC的垂线,垂足分别为M,N.证△PAM∽△PEN,可得∠AEP的大小不变;(3)利用(2)的结论,证BE=EC.再证△ABE∽△BCD,利用比例式求出k,再利用三角函数求出AP的长.【详解】解:(1)如图,∵k=1,∴在矩形ABCD是正方形,∵点P移动到对角线交点处,∴PA=PE,∠AEP=45°,故,如图,当点P移动到其它位置时,过点P分别作AB,BC的垂线,垂足分别为M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四边形ABCD是正方形,∴∠MBN=90°,PN=PM,∴四边形PMBN是正方形,∴∠MPN=90°,∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM≌△PEN,∴PA=PE,∴∠AEP=45°,故,∠AEP的大小不变;故答案为:1,45°,不变;(2)∠AEP的大小不变.理由如下:过点P分别作AB,BC的垂线,垂足分别为M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四边形ABCD是矩形,∴∠MBN=∠BAD=∠BCD=90°,∴四边形PMBN是矩形,∴∠MPN=90°,PN=BM,又∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM∽△PEN,∴=.在Rt△PBM和Rt△BAD中,tan∠ABD=.在Rt△APE中,tan∠AEP=.∵k为定值,∴∠AEP的大小不变.(3)∵PC⊥BD,∠BCD=90°,∴∠PBC+∠PCB=∠PBC+∠BDC=∠BPE+∠EPC=90°.∵AE∥PC,∴∠AEB=∠PCB,∠AEP=∠EPC.∵tan∠AEP=k,tan∠ABD=k,∴∠AEP=∠ABD.∵四边形ABCD是矩形,∴AB=CD,AD=BC,AB∥CD,∴∠ABD=∠BDC,∴∠AEB=∠PCB=∠BDC=∠AEP=∠EPC,∠PBC=∠BPE,∴BE=PE=EC.∵∠AEB=∠BDC,∠ABE=∠BCD,∴△ABE∽△BCD,∴,即,∴BC2=2AB2,∴,k=.在Rt△BPC中,tan∠PCB==tan∠AEP=k=,∴PB=PC=,由勾股定理得,∴PE=BC=,∴PA=PE=.【点睛】本题考查了矩形的性质与判定,正方形的判定与性质,相似三角形判定与性质,解直角三角形,解题关键是恰当作辅助线,构建全等三角形或相似三角形,利用解直角三角形的知识求解.7.(1)依据1:对角线互相平分的四边形是平行四边形,依据2:对角线相等的平行四边形是矩形;(2)见解析;(3)4【分析】(1)借助问题情景即可得出结论;(2)连接CE,先根据已证结论及正方形的性解析:(1)依据1:对角线互相平分的四边形是平行四边形,依据2:对角线相等的平行四边形是矩形;(2)见解析;(3)4【分析】(1)借助问题情景即可得出结论;(2)连接CE,先根据已证结论及正方形的性质得出AB=BC,∠1=∠4,再由矩形性质证得∠PBA=∠EBC,得出△PBA≌△EBC,即可得出结论;(3)过点B作BM⊥AP,垂足为M.结合(2)所得结论利用等腰直角三角形的性质可得BM=PM=ME,设BM=ME=x,则AM=x+-1.则根据三角函数解直角三角形求出x=1,再由直角三角形的性质求出正方形的边长,即可得出结果.【详解】解:(1)依据1:对角线互相平分的四边形是平行四边形.依据2:对角线相等的平行四边形是矩形.(2)证明:连接CE,由题意得,∠CEA=90°,∴∠1+∠2=180°-∠AEC=90°.∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠3+∠4=180°-∠ABC=90°.∵∠2=∠3.∴∠1=∠4.∵四边形EBFD是矩形,∴∠EBF=90°.∴∠PBE=180°-∠EBF=90°.∴∠PBE=∠ABC.∴∠PBE+∠EBA=∠ABC+∠EBA.即∠PBA=∠EBC.∴△PBA≌△EBC.∴PB=EB.(3)解:过点B作BM⊥AP,垂足为M.由(2)可知,PB=BE,∠PBE=90°.∴BM=PM=ME.设BM=ME=x,则AM=x+-1.∵在Rt△ABM中,∠BAM=30°.∴AB=2BM,tan∠BAM=,解得x=1.∴AB=2,∴S正方形ABCD=2×2=4.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的判定与性质,全等三角形的判定和性质等知识,熟练掌握特殊四边形、全等三角形及三角函数等相关知识点是解题的关键.8.(1)30°,6,4,7;(2)AG;(3)等边,;(4)3,,6【分析】(1)由点H为AC中点,可得AC=2AH,由折叠,点B与点H重合,与四边形ABCD为矩形,可证GH为AC的垂直平分线,可解析:(1)30°,6,4,7;(2)AG;(3)等边,;(4)3,,6【分析】(1)由点H为AC中点,可得AC=2AH,由折叠,点B与点H重合,与四边形ABCD为矩形,可证GH为AC的垂直平分线,可得AG=CG,∠GCH=∠GAH,可求∠ACB=30°,利用三角函数可求BC=,AG=4,BF=FC=,可求,与△ABG相似的三角形由7个;(2)由EF为折痕,可证△AEH∽△AHG,可得即可;(3)由四边形ABCD为矩形,点H为对角线AC中点,可证△ABH为等边三角形,再证△ABM∽△MHN,可得即可;(4)连结BD,当点Q′在BD上时,Q′D最小,先求BC=,AQ′=,可求Q′D最小=,当BQ′⊥BD时,△BDQ′面积最大∠CBQ′=60°,S△BDQ′最大=.【详解】解(1)∵点H为AC中点,∴AC=2AH,∵折叠,点B与点H重合,∴AB=AH=2,BG=HG,∠BAG=∠HAG=,∠B=∠AHG,∵四边形ABCD为矩形,∴∠B=90°,∴∠AHG=∠B=90°,∴GH为AC的垂直平分线,∴AG=CG,∠GCH=∠GAH,∴∠BAG=∠HAG=∠GCH,∵∠BAH+∠BCH=180°-∠B=90°,∴3∠ACB=90°∴∠ACB=30°,∴∠BAG=∠HAG=∠GCH=30°,∴tan30°=,AB=2,∴BC=,∵tan∠BAG=tan30°=,∴BG=,∴AG=2BG=4,BF=FC=,∴GF=BF-BG=3-2=1,∴,∵AD∥BC,∴∠DAC=∠ACB=30°,∴∠BAG=∠HAG=∠GHF=∠HCF=∠GCH=∠EAH=∠DAC=∠BCA=30°,∵∠B=∠AHG=∠HFG=∠HFC=∠AEH=∠D=∠GHC=∠CBA=90°,∴△ABG∽△AHG∽△HFG∽△CFH∽△CHG∽△AEH∽△ADC∽△CBA,∴与△ABG相似的三角形由7个,故答案为:30°;6;4;7;(2)∵EF为折痕,∴EH⊥AD,∵∠EAH=∠HAG=30°∠AHG=∠AEH=90°∴△AEH∽△AHG,∴,∴故答案为AG;(3)∵四边形ABCD为矩形,点H为对角线AC中点,∴AH=CH=BH,由图2知AB=AH,∴AH=BH=AB,∴△ABH为等边三角形,∴∠ABH=∠AHB=60°,∵∠AMN=∠ABH;∴∠AMN=∠ABH=∠AHB=60°,∴∠BAM+∠AMB=180°-∠ABH=120°,∠AMB+∠NMH=180°-∠AMN=120°,即∠BAM+∠AMB=∠AMB+∠NMH,∴∠BAM=∠NMH,∴△ABM∽△MHN,∴,∵AB=,MH=,∴,∴,故答案为:等边;,(4)连结BD,当点Q′在BD上时,Q′D最小∵AB=2,AD=BC=6,∴BC=∵AQ′=Q′H=∴Q′D最小=当BQ′⊥BD时,△BDQ′面积最大∵tan∠DAC=,∴∠DAC=30°,∴∠CBQ′=90°-∠DBC=90°-30°=60°∴tan∠CBQ'=S△BDQ′最大=;故答案为;;6.【点睛】本题考查折叠性质,矩形性质,线段垂直平分线,锐角三角函数,三角形相似判定与性质,等边三角形判定与性质,两图形的最小距离,最大面积,掌握查折叠性质,矩形性质,线段垂直平分线,锐角三角函数,三角形相似判定与性质,等边三角形判定与性质,两图形的最小距离,最大面积求法是解题关键.9.(1);;(2)成立,理由见解析;(3)【分析】(1)【观察猜想】根据正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可证明Rt△BAN≌Rt△BCM(HL),又根据E是A解析:(1);;(2)成立,理由见解析;(3)【分析】(1)【观察猜想】根据正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可证明Rt△BAN≌Rt△BCM(HL),又根据E是AN的中点,即可证明CM=2BE,根据等边对等角得到∠ABE=∠BCM,∠ABE+∠BMC=90∘即可证明CM⊥BE.(2)【探究证明】延长BE至F使EF=BE,连接AF,先证明△AEF≌△NEB,再证明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,进而求得∠BCM+∠EBC=90°,即可证明EB⊥CM;(3)[拓展延伸]由a=45°得到∠ABE=15°,由前面可得∠BMC=30°,过C作CG⊥MB于G,设CG为m,则BC=m,MG=m,所以MB=BN=m-m,最后求得的值.【详解】解:【观察猜想】(1)CM=2BE;CM⊥BE;如图1所示图1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中点,∴BE=AE=NE=AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90∘∴∠BPM=90∘∴CM⊥BE.【探究证明】(2)CM=2BE,CM⊥BE仍然成立.如图2所示,延长BE至F使EF=BE,连接AF,∵AE=EN,∠AEF=∠NEB,EF=BE,∴△AEF≌△NEB∴AF=BN,∠F=∠EBN,∴AF//BN,AF=BM,∴∠FAB+∠ABN=180°,∵∠MBN=∠ABC=90°,∴∠NBC+∠ABN=90°,∴∠NBA+∠FAD=90°,∴∠CBN=∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸](3)由a=45°得∠MBA=∠ABN=45°,∵∠NBE=2∠ABE,∴∠ABE=15°,由前面可得∠MCB=∠ABE=15°,∠MBC=135°,∴∠BMC=180°-15°-135°=30°,如图3所示,过C作CG⊥MB于G,图3设CG为m则BC=m,MG=m,所以MB=BN=m-m,∴.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形的性质,直角三角形的性质,解题的关键是灵活运用以上性质解决问题.10.(1)∠CB′E=60°,;(2)①两个结论成立,理由见解析;(3)或.【分析】(1)根据旋转的性质和等腰三角形的性质以及直角三角形的性质解答即可;(2)①根据旋转的性质和等腰三角形的性质和直解析:(1)∠CB′E=60°,;(2)①两个结论成立,理由见解析;(3)或.【分析】(1)根据旋转的性质和等腰三角形的性质以及直角三角形的性质解答即可;(2)①根据旋转的性质和等腰三角形的性质和直角三角形的性质解答即可;②当A,E,F三点共线时,分两种情况讨论,利用三角函数解答即可.【详解】解:(1)∵AB=AC,∠BAC=120°,AF⊥BC,∴∠ABC=∠ACB=30°,BF=FC,根据旋转的性质得:AB=AC=AB′,∴∠ABB′=∠AB′B==70°,∵AC=AB′,∠B′AC=120°-40°=80°,∴∠AB′C==50°,∴∠CB′E=180°-70°-50°=60°,连接EF,∵BF=FC,则EF为直角三角形BEC斜边上的中线,∴EF=BF=FC,在Rt△ABF中,,∴;(2)①两个结论成立,理由如下:连接EF,根据旋转的性质得:AB=AC=AB′,等腰△ABB′中,∠BAB′=α,则∠AB′B==90°−α,等腰△AB′C中,∠CAB′=α−120°,则∠AB′C==150°−α,∴;∵AB=AC,AF⊥BC.∴∠FAC=60°,Rt△CEB′中,=sin60°=,Rt△CFA中,=sin60°=,∴,∵∠FCE=∠ACB′=30°+∠ACE,∴△CEF~△CB′A∴;②当A,E,F三点共线时,分以下两种情况讨论,(Ⅰ)当点E在FA的延长线上时,如图,由①可知,∠B'=60°,∵CE⊥BB',而BC=2EF=2BF,EB=CE,设BF=x,则EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB+B'E=,∴;(Ⅱ)当点E在AF的延长线上时,如图,同理可得,∠CB'E=60°,BC=2EF=2BF,∵CE⊥BB',∴∠CEB'=∠CEB=90°,EB=CE,设BF=x,则EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB-B'E=,∴;综上,的值为或.【点睛】本题考查了旋转的性质、等腰三角形的性质、全等三角形的判定和性质、特殊角的三角函数值等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.11.(1),;(2)结论成立,理由见解析;(3).【分析】(1)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质、三角形的外角性质即可求出的度数;(2)如图(见解析),先根据解析:(1),;(2)结论成立,理由见解析;(3).【分析】(1)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质、三角形的外角性质即可求出的度数;(2)如图(见解析),先根据直角三角形斜边上的中线等于斜边的一半、三角形中位线定理可得,再根据等腰三角形的性质、平行线的性质、三角形的外角性质可得,然后根据三角形全等的判定定理与性质可得,最后根据平行线的性质、等边三角形的判定与性质、角的和差即可求出的度数;(3)如图(见解析),先根据直角三角形的性质可得,从而可得,再分别在和中,根据直角三角形的性质、勾股定理可得,从而可得,然后在中,利用勾股定理即可得.【详解】(1)在中,,点是中点,,同理可得:,,在中,,,,又,,,,,,,;(2)结论成立,理由如下:如图,分别取AB的中点为M,取AD的中点为N,连接FM、CM、EN、FN,,,又点是中点,是的中位线,,,同理可得:,,绕点按顺时针方向旋转角,,,,,,,,,同理可得:,,在和中,,,,,是等边三角形,,,,,,,;(3)如图,过点G作,交AE延长线于点F,在中,,,,,由旋转的性质得:,在中,,,在中,,,,则在中,.【点睛】本题考查了直角三角形的性质、三角形中位线定理、三角形全等的判定定理与性质、旋转的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.12.【问题探究】(1);(2).【拓展应用】.【分析】问题探究:(1)由平行线的性质得出∠ACE+∠BAC=180°,即可得出结果;(2)由平行线的性质得出∠E=∠BAD=72°,证出AC=AE解析:【问题探究】(1);(2).【拓展应用】.【分析】问题探究:(1)由平行线的性质得出∠ACE+∠BAC=180°,即可得出结果;(2)由平行线的性质得出∠E=∠BAD=72°,证出AC=AE,由平行线证明△ABD∽△ECD,求出AD=2;ED=4,ED=2,得出AC=AE=AD+ED=6;

拓展应用:过点D作DF∥AB交AC于点F.证明△BAE∽△DFE,得出=2,得出AB=2DF,EF=AE=1,AF=AE+EF=3,证出AC=AD,在Rt△ADF中,求出DF=AF×tan∠CAD=,得出AC=AD=2DF=2,AB=2DF=2,得出AC=AB,在Rt△ABC中,求出BC=AB=2即可.【详解】解:(1)∵CE∥AB,∴∠ACE+∠BAC=180°,

∴∠ACE=180°-108°=72°;

故答案为:72;

(2)∵CE∥AB,

∴∠E=∠BAD=72°,

∴∠E=∠ACE,

∴AC=AE,

∵CE∥AB,

∴△ABD∽△ECD,

∴,∵BD=2CD,

∴=2,∴AD=2ED=4,

∴ED=2,

∴AC=AE=AD+ED=4+2=6;拓展应用:

:如图3中,过点D作DF∥AB交AC于点F.

∵AC⊥AB,∴∠BAC=90°,∵DF∥AB,

∴∠DFA=∠BAC=90°,

∵∠AEB=∠DEF,

∴△BAE∽△DFE,

∴=2,∴AB=2DF,EF=AE=1,AF=AE+EF=3,∵∠BAD=120°,

∴∠CAD=30°,

∴∠ACD=75°=∠ADC,

∴AC=AD,

在Rt△ADF中,∵∠CAD=30°,

∴DF=AF×tan∠CAD=3×,∴AC=AD=2DF=2,AB=2DF=2,∴AC=AB,

在Rt△ABC中,∵∠BAC=90°,

∴BC=AB=2;故答案为:2.【点睛】此题考查四边形综合题,相似三角形的判定与性质,直角三角形的性质,等腰三角形的判定,勾股定理,本题综合性强,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.13.(1)DG=BE;(2),DG⊥BE;(3)4.【分析】(1)通过证明△DCG和△BCE(SAS)全等,得到DG=BE.(2)通过证明△DCG∽△BCE得到,所以.∠BEC=∠DGC.延长BE解析:(1)DG=BE;(2),DG⊥BE;(3)4.【分析】(1)通过证明△DCG和△BCE(SAS)全等,得到DG=BE.(2)通过证明△DCG∽△BCE得到,所以.∠BEC=∠DGC.延长BE、GD相交于点H.因为矩形ECGF,所以∠FEC=∠FGC=90°,所以∠HEF+∠BEC=180°-∠FEC=90°,∠FGH+∠DGC=90°,所以∠H=∠F=90°,所以DG⊥BE.(3)作EN⊥BC于N,GM⊥BC交BC的延长线于M.首先证明点G的运动轨迹是线段GM,将2BG+BE的最小值转化为求2(BG+DG)的最小值.【详解】(1)DG=BE理由:∵正方形ABCD,∴CD=CB,∠BCD=90°∵正方形ECGF,∴CG=CE,∠ECG=90°∴∠ECG=∠BCD=90°∴∠DCG=∠BCE在△DCG和△BCE中∴△DCG≌△BCE(SAS)∴DG=BE(2),DG⊥BE.理由如下:延长BE、GD相交于点H.∵矩形ECGF、矩形ABCD,∴∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵CD:CB=2:4=1:2,CG:CE=1:2,∴CD:CB=CG:CE,∵∠DCG=∠BCE,∴△DCG∽△BCE,∴,∠BEC=∠DGC,∴∵矩形ECGF∴∠FEC=∠FGC=∠F=90°∴∠HEF+∠BEC=180°-∠FEC=90°,∠FGH+∠DGC=90°,∴∠H=∠F=90°∴DG⊥BE(3)作EN⊥BC于N,GM⊥BC交BC的延长线于M.易证△ECN∽△CGM,∴,∵EN=AB=2,∴CM=1,∴点G的运动轨迹是直线MG,作点D关于直线GM的对称点G′,连接BG′交GM于G,此时BG+GD的值最小,最小值=BG′由(2)知,∴BE=2DG∴2BG+BE=2BG+2DG=2(BG+DG)∴2BG+BE的最小值就是2(BG+DG)的最小值.∵BG′=,∴2BG+BE的最小值为4故答案为4.【点睛】本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质.在判断全等和相似时出现“手拉手”模型证角相等.这里注意利用三边关系来转化线段的数量关系求出最小值.14.(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=.【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=.【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.15.(1)1,;(2),∠EAD=90°;(3)线段AD的长为(2+6).【分析】(1)由题意可得Rt△ABC和Rt△DBE均为等腰直角三角形,通过证明△ABD≌△BCE,可得AD=EC,∠DAB=解析:(1)1,;(2),∠EAD=90°;(3)线段AD的长为(2+6).【分析】(1)由题意可得Rt△ABC和Rt△DBE均为等腰直角三角形,通过证明△ABD≌△BCE,可得AD=EC,∠DAB=∠BCE=45°,从而可得到结论;(2)通过证明△ABD∽△BCE,可得的值,∠BAD=∠ACB=60°,即可求∠EAD的度数;(3)由直角三角形的性质可证AM=BM=DE,即可求DE=4,由勾股定理可求CE的长,从而可求出AD的长.【详解】(1)∵∠ABC=∠DBE=90°,∠ACB=∠BED=45°,∴∠CBE=∠ABD,∠CAB=45°∴AB=BC,BE=DE,∴△BCE≌△BAD∴AD=CE,∠BAD=∠BCE=45°∴=1,∠EAD=∠CAB+∠BAD=90°故答案为:1,(2),∠EAD=90°理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°∴∠ABD=∠EBC,∠BAC=∠BDE=30°∴在Rt△ABC中,tan∠ACB==tan60°=在Rt△DBE中,tan∠BED==tan60°=∴=又∵∠ABD=∠EBC∴△ABD∽△BCE∴==,∠BAD=∠ACB=60°∵∠BAC=30°∴∠EAD=∠BAD+∠BAC=60°+30°=90°,(3)如图,由(2)知:==,∠EAD=90°∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且点M是DE的中点,∴AM=BM=DE,∵△ABM为直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,设EC=x,则AD=x,AE=8-xRt△ADE中,AE2+AD2=DE2∴(8-x)2+(x)2=(4)2,解之得:x=2+2(负值舍去),∴EC=2+2,∴AD=CE=2+6,∴线段AD的长为(2+6),【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,勾股定理,等腰三角形的性质,直角三角形的性质等知识.16.(1)见解析;(2)AC平分∠BCD,理由见解析;(3)AF=4.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的解析:(1)见解析;(2)AC平分∠BCD,理由见解析;(3)AF=4.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;

(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出AF的长.【详解】(1)证明:∵四边形ABCD为圆内接四边形∴∠A+∠C=180°,∠ABC+∠ADC=180°.∵BD平分∠ABC∴∠ABD=∠CBD∴弧AD=弧CD∴AD=CD∴四边形ABCD是等补四边形(2)AC平分∠BCD,理由如下:过点A作AE⊥BC于E,AF⊥CD于F则∠AEB=∠AFD=90°∵四边形ABCD是等补四边形∴∠ADC+∠B=180°又∵∠ADC+∠ADF=180°∴∠B=∠ADF在△AFD与△AEB中∴≌∴∴点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=∠BCD同理∠FAD=∠EAD∴∠FCA=∠FAD.又∵∠F=∠F∴△FAD∽△FCA∴即∴AF=4【点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.17.(1);(2)或;(3)或【分析】(1)延长到,使,连接,过作于,在中,利用勾股定理求得EH的长,再利用三角形中位线定理即可求解;(2)分在上方和下方两种情况讨论,延长与的延长线交于一点,利用解析:(1);(2)或;(3)或【分析】(1)延长到,使,连接,过作于,在中,利用勾股定理求得EH的长,再利用三角形中位线定理即可求解;(2)分在上方和下方两种情况讨论,延长与的延长线交于一点,利用等腰直角三角形的性质结合三角形中位线定理即可求解;(3)分点D在线段AC上和在AC延长线上两种情况讨论,仿照(1)的方法即可求解.【详解】(1)延长到,使,连接,∵B为中点,为的中点,∴是的中位线,∴,过作于,∵,,∴四边形BDEG是矩形,∵等腰直角三角形,,∴∠C=∠A=45,∵,∴等腰直角三角形,∵,∴,∴,∵在中,,∴;(2)当时,分成两种情况:如图在上方,延长与的延长线交于一点,∵∠BAC=45,∴是等腰直角三角形,且B为AH的中点,∴,∴,∵点F是AE中点,∴,∴;如图,在下方,延长与的延长线交于一点,同理是等腰直角三角形,为中点,∴,∴,∵点F是AE中点,∴,∴;(3)当点D在线段AC上时,延长到,使,连接,∵B为中点,为的中点,∴是的中位线,过作于,∠ACB+∠DCE=90,∠ABC=90,∴四边形BCEG是矩形,∴GE=BC=6,BG=CE=2,∴GH=2+6=8,∴EH=,∴;当点D在AC延长线上时,延长到,使,连接,∵B为中点,为的中点,∴是的中位线,过作于,同理四边形BCEG是矩形,∴GE=BC=6,BG=CE=2,∴GH=6-2=4,∴EH=,∴;【点睛】本题是几何变换综合题,主要考查了矩形的判定和性质,三角形中位线定理,勾股定理的应用,等腰直角三角形的性质等,解题的关键是灵活应用所学知识解决问题,属于中考压轴题.18.(1)①;②;(2)(1)中的结论仍然成立,理由详见解析;(3)或2或.【分析】(1)利用旋转的性质证明△BCD≌△BCE(SAS),可得结论;(2)结论仍然成立.利用旋转的性质证明△BCD≌解析:(1)①;②;(2)(1)中的结论仍然成立,理由详见解析;(3)或2或.【分析】(1)利用旋转的性质证明△BCD≌△BCE(SAS),可得结论;(2)结论仍然成立.利用旋转的性质证明△BCD≌△BCE(SAS),可得结论;(3)分三种情形利用等边三角形的判定和性质分别求解即可.【详解】(1)如图1中,∵CM平分∠ACB,∠ACB=90°,

∠ACM=∠BCM=45°,

根据旋转的性质知:∠DCE=90°,CD=CE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论