2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)_第1页
2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)_第2页
2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)_第3页
2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)_第4页
2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第44页(共44页)2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)一.选择题(共8小题)1.(2025春•滨海新区期末)关于天体运动研究的内容及物理学史以下描述正确的是()A.第谷在其天文观测数据的基础上,总结出了行星按照椭圆轨道运行的规律 B.牛顿发现了万有引力定律,并通过扭秤实验测出了引力常量的数值 C.“月—地检验”成功验证了地球对月球的引力与地球对地面物体的引力都遵循相同的规律 D.天王星是先通过理论计算,后经过实际观测发现的行星,因此被称为“笔尖下发现的行星”2.(2025春•太原期末)直径约40~100m的小行星“2016H03”绕太阳近似做匀速圆周运动,“天问二号”探测器从地面发射,要对该小行星进行探测。下列说法正确的是()A.“天问二号”在地面附近的发射速度要大于16.7km/s B.若“天问二号”绕地球做匀速圆周运动,其最大速度约为7.9km/s C.若“天问二号”已与小行星在同一轨道上运行,其要追上小行星时需加速 D.若“天问二号”已在小行星上着陆,为返回地球,其飞离小行星的速度一定要大于11.2km/s3.(2025春•合肥期末)欧洲航天局在2025年2月4日宣布,欧洲航天局利用空间探测器探测到一颗巨大的系外行星盖亚﹣4b,环绕着一恒星公转,其椭圆轨道如图所示,环绕周期大约570天。连线ac为长轴、连线bd为短轴,其环绕方向为顺时针。下列说法正确的是()A.恒星不一定处在椭圆的焦点上 B.盖亚﹣4b在b、d两点的加速度相同 C.盖亚﹣4b在a点的速度大于在c点的速度 D.盖亚﹣4b从b经c到d的时间约为285天4.(2025•临汾模拟)我国计划在2030年前实现载人登陆月球开展科学探索,其后将建造月球科研试验站,开展系统、连续的月球探测和相关技术试验。假设飞船在距离月球表面的高度等于月球半径处绕月球做匀速圆周运动,周期为T;已知月球的半径为R,引力常量为G,下列说法正确的是()A.该飞船在轨的速度大小为2πRB.月球的质量为4πC.月球两极的重力加速度为32πD.月球的第一宇宙速度为25.(2025•三台县模拟)中国空间站和嫦娥六号分别围绕地球和月球做圆周运动,中国空间站的轨道半径为嫦娥六号轨道半径的n倍,中国空间站的运动周期为嫦娥六号运动周期的k倍,根据上述数据可得地球质量与月球质量之比为()A.nk B.kn C.n3k6.(2025•五华区校级模拟)2025年1月7日,实践二十五号卫星在西昌卫星发射中心发射成功,并在离地36000km高空的圆轨道为北斗G7卫星加注142公斤燃料,完成人类首次太空卫星燃料补加及延寿服务。若加注燃料前后G7卫星的轨道半径不变,则()A.加注燃料时,实践二十五号卫星的线速度大于7.9km/s B.加注燃料时,实践二十五号与G7卫星处于平衡状态 C.加注燃料后,G7卫星质量增大,线速度大小不变 D.加注燃料后,G7卫星质量增大,加速度减小7.(2025•怀仁市四模)我国计划于2026年发射嫦娥七号,主要任务是前往月球南极寻找水冰存在的证据。未来,嫦娥七号发射后到达月球引力范围,先进入环月圆轨道1,在该轨道上运行的线速度大小为v1、周期为T1;变轨后进入环月圆轨道2,在该轨道上运行的线速度大小为v2、周期为T2,则下列关系正确的是()A.v1T1=v2T2 B.v1C.v1D.v8.(2025•湖北模拟)科幻作品中,卫星a在某星球的赤道平面内绕该星球转动,其轨道可视为圆,卫星通过发射激光与星球赤道上一固定的观测站P通信,已知该星球半径为R、自转周期为T,卫星轨道半径为2R、周期为2T。引力常量为G,则下列说法正确的是()A.卫星绕星球转动的角速度比星球自转的角速度大 B.卫星的线速度大于该星球赤道上的物体随星球自转的速度 C.卫星相对星球转动一周的时间内,卫星可以与观测站P通信的时间为23D.可以通过变轨调整,使卫星a降低到较低的圆轨道运行,且周期仍为2T二.多选题(共4小题)(多选)9.(2025春•滨海新区期末)已知空间站质量为m,离地面的高度为h,地球的半径为R,地球的质量为M,万有引力常量为G。若空间站可视为绕地心做匀速圆周运动,则下列说法正确的是()A.空间站的线速度大小为Gm(B.空间站的向心加速度大小为GM(C.空间站的运行周期为4πD.空间站的角速度大小为GM(多选)10.(2025春•湖北期末)航天员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处。若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。已知该星球的半径与地球半径之比为R星:R地=1:4,地球表面重力加速度为g,设该星球表面附近的重力加速度大小为g′,空气阻力不计,忽略地球和星球自转的影响。则()A.g′:g=1:5 B.g′:g=5:2 C.M星:M地=1:20 D.M星:M地=1:80(多选)11.(2025春•江岸区期末)“天通一号”03星发射过程简化为如图所示:火箭先把卫星送上椭圆轨道1(P、Q分别是远地点和近地点),卫星再变轨到圆轨道2,最后变轨到轨道3(静止卫星轨道,且与轨道2半径相同)。轨道1、2相切于P点,轨道2、3相交于M、N两点,忽略卫星质量变化。则下列说法正确的是()A.卫星在三个轨道上的周期的关系为:T3=T2>T1 B.由轨道1变至轨道2,卫星在P点沿速度方向向前喷气 C.卫星在轨道2上经过M点的速度和在轨道3上经过N点的速度相同 D.卫星在轨道1和在轨道2上经过P点时的向心加速度相同(多选)12.(2025春•西安期末)2025年1月,中国科学院紫金山天文台发现了一颗新彗星。据观测该彗星的轨道为椭圆,其位置介于木星轨道与天王星轨道之间。与土星轨道交于P、Q两点。只考虑太阳对各星体的引力,行星的轨道可视为圆形。下列说法正确的是()A.该彗星的周期小于天王星的周期 B.该彗星在P点的加速度比土星在P点的加速度小 C.该彗星在远日点的运行速度小于木星的运行速度 D.该彗星与太阳的连线和土星与太阳的连线在相同时间内扫过的面积一定相同三.填空题(共4小题)13.(2025春•杨浦区校级期末)“嫦娥六号”环绕月球做轨道半径为r、周期为T的匀速圆周运动。“嫦娥六号”绕月球运动的向心加速度大小为;月球与地球质量的比值为k、半径的比值为n,则“嫦娥六号”携带的五星红旗在月球表面与在地球表面所受重力大小的比值近似为。14.(2025春•河北月考)火星是一颗类地行星,虽然载人登陆火星存在诸多挑战,但人类也在逐步将这一愿景变为现实。已知火星可近似看作球体,其半径为R,若能实现载人登陆火星,则登陆火星后在火星表面h(h≪R)高度处静止释放一个质量为m的小球,若测得小球落地的时间为t,引力常量为G,不考虑火星自转及空气阻力的影响,由此可知,小球落地过程中火星对小球的引力所做的功W=,小球落地瞬间引力的瞬时功率P=;火星的质量M=,火星的第一宇宙速度v=。15.(2025春•唐山月考)火星是一颗类地行星,虽然载人登陆火星存在诸多挑战,但人类也在逐步将这一愿景变为现实。已知火星可近似看作球体,其半径为R,若能实现载人登陆火星,则登陆火星后在火星表面h(h≪R)高度处静止释放一个质量为m的小球,若测得小球落地的时间为t,引力常量为G,不考虑火星自转及空气阻力的影响,由此可知,小球落地过程中火星对小球的引力所做的功W=,小球落地瞬间引力的瞬时功率P=;火星的质量M=,火星的第一宇宙速度v=。16.(2025•福建模拟)某星球表面不存在大气层,在该星球将一质点以初速度v0竖直向上抛出。从抛出时开始计时,s﹣t图象如图所示,根据图像v0=m/s,假设该星球的半径与地球近似相等,则该星球的密度是地球的倍。四.解答题(共4小题)17.(2025春•江阴市校级期末)我国计划2030年前实现登月开展科学探索,载人登月的初步方案是:采用两枚运载火箭分别将月面着陆器和载人飞船送至地月转移轨道。若飞船到达月球前,先在离月球表面高度等于月球半径处绕月球做匀速圆周运动,周期为T。已知引力常量为G,月球的半径为r,忽略月球的自转。求:(1)月球的质量;(2)月球第一宇宙速度的大小。18.(2025春•南通期末)如图所示,地球绕太阳运动的轨道可近似为圆,哈雷彗星的运动轨道是一个非常扁的椭圆,已知哈雷彗星轨道半长轴为地球轨道半径的k倍,地球公转周期为T。(1)求哈雷彗星的公转周期T′;(2)若太阳中心到哈雷彗星轨道近日点、远日点的距离分别为r1、r2,求哈雷彗星在近日点和远日点的加速度大小之比a119.(2025春•滨海新区期末)如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动(可视为匀速圆周运动)的轨道舱。已知月球的半径为R,轨道舱到月球表面的距离为h,引力常量为G,月球表面的重力加速度为g,不考虑月球的自转。求:(1)月球的质量M;(2)轨道舱绕月飞行的周期T;(3)月球的“第一宇宙速度”大小v。20.(2025春•武汉期末)2025年3月10日,我国在西昌卫星发射中心使用长征三号乙运载火箭,成功将通信技术试验卫星十五号发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。假设卫星进入预定轨道后以速度v绕地球做匀速圆周运动,卫星的轨道半径为r,地球的半径为R,引力常量为G,忽略地球自转的影响。请用以上物理量表达:(1)地球的质量M;(2)地球表面的重力加速度大小g;(3)地球的第一宇宙速度。

2026年高考物理复习新题速递之万有引力与宇宙航行(2025年7月)参考答案与试题解析一.选择题(共8小题)题号12345678答案CBCCCCCC二.多选题(共4小题)题号9101112答案BDADADAC一.选择题(共8小题)1.(2025春•滨海新区期末)关于天体运动研究的内容及物理学史以下描述正确的是()A.第谷在其天文观测数据的基础上,总结出了行星按照椭圆轨道运行的规律 B.牛顿发现了万有引力定律,并通过扭秤实验测出了引力常量的数值 C.“月—地检验”成功验证了地球对月球的引力与地球对地面物体的引力都遵循相同的规律 D.天王星是先通过理论计算,后经过实际观测发现的行星,因此被称为“笔尖下发现的行星”【考点】天体运动的探索历程.【专题】定性思想;推理法;万有引力定律在天体运动中的应用专题;理解能力.【答案】C【分析】根据物理学史和常识进行解答,记住著名物理学家的主要贡献即可。【解答】解:A.开普勒在第谷观测的天文数据基础上,总结出了行星运动的规律,故A错误;B.牛顿发现了万有引力定律,卡文迪什测出了引力常量,故B错误;C.“月—地检验”成功验证了地球对月球的引力与地球对地面物体的引力都遵循相同的规律,故C正确;D.“笔尖下发现的行星“指的是通过数学计算预测其存在后、再经观测确认的行星,是海王星,故D错误。故选:C。【点评】本题考查人类研究天体运动的历史历程,了解这部分物理学史,掌握有关科学家的贡献。2.(2025春•太原期末)直径约40~100m的小行星“2016H03”绕太阳近似做匀速圆周运动,“天问二号”探测器从地面发射,要对该小行星进行探测。下列说法正确的是()A.“天问二号”在地面附近的发射速度要大于16.7km/s B.若“天问二号”绕地球做匀速圆周运动,其最大速度约为7.9km/s C.若“天问二号”已与小行星在同一轨道上运行,其要追上小行星时需加速 D.若“天问二号”已在小行星上着陆,为返回地球,其飞离小行星的速度一定要大于11.2km/s【考点】第一、第二和第三宇宙速度的物理意义;不同轨道上的卫星或行星(可能含赤道上物体)运行参数的比较.【专题】定性思想;推理法;万有引力定律在天体运动中的应用专题;推理论证能力.【答案】B【分析】第一宇宙速度7.9km/s是最大环绕速度,最小发射速度;已在同一轨道上变轨,需先加速后减速,或反过来;11.2km/s是第二宇宙速度,能够脱离地球的引力作用。【解答】解:A.地面附近发射飞行器绕地球运动,发射速度应大于第一宇宙速度且小于第二宇宙速度,即速度大于7.9km/s,且小于11.2km/s,故A错误;B.绕地球做匀速圆周运动,最大速度约为7.9km/s,故B正确;C.“天问二号”已与小行星在同一轨道上运行,若加速会做离心运动,将到更高的轨道上去,故C错误;D.11.2km/s是第二宇宙速度,能够脱离地球的引力作用,成为绕太阳运动的人造行星或绕其他行星运动,故D错误。故选:B。【点评】本题解题关键是能够掌握第一宇宙速度和第二宇宙速度的概念,比较基础。3.(2025春•合肥期末)欧洲航天局在2025年2月4日宣布,欧洲航天局利用空间探测器探测到一颗巨大的系外行星盖亚﹣4b,环绕着一恒星公转,其椭圆轨道如图所示,环绕周期大约570天。连线ac为长轴、连线bd为短轴,其环绕方向为顺时针。下列说法正确的是()A.恒星不一定处在椭圆的焦点上 B.盖亚﹣4b在b、d两点的加速度相同 C.盖亚﹣4b在a点的速度大于在c点的速度 D.盖亚﹣4b从b经c到d的时间约为285天【考点】不同轨道上的卫星或行星(可能含赤道上物体)运行参数的比较;开普勒三大定律.【专题】比较思想;模型法;万有引力定律的应用专题;理解能力.【答案】C【分析】根据开普勒第一定律分析A项;根据盖亚﹣4b在b、d两点受到的万有引力关系,分析加速度关系;根据开普勒第二定律分析盖亚﹣4b在a点与c点的速度关系;根据开普勒第二定律分析d→a→b的平均速度与从b经c到d的平均速度关系,再确定从b经c到d的时间。【解答】解:A、根据开普勒第一定律可知,恒星一定处在椭圆的一个焦点上,故A错误;B、盖亚﹣4b在b、d两点时与恒星的距离相等,受到的万有引力大小相等,但方向不同,故在b、d两点的加速度大小相等,方向相反,加速度不同,故B错误;C、a点离恒星近,根据开普勒第二定律可知,在a点的速度大于在c点的速度,故C正确;D、根据开普勒第二定律可知,盖亚﹣4b离恒星越近,速度越大,则d→a→b的平均速度大于从b经c到d的平均速度,故盖亚﹣4b从b经c到d的时间比周期的一半(即285天)长,故D错误。故选:C。【点评】解答本题的关键要掌握开普勒第一定律和开普勒第二定律,知道盖亚﹣4b离恒星越近,速度越大。4.(2025•临汾模拟)我国计划在2030年前实现载人登陆月球开展科学探索,其后将建造月球科研试验站,开展系统、连续的月球探测和相关技术试验。假设飞船在距离月球表面的高度等于月球半径处绕月球做匀速圆周运动,周期为T;已知月球的半径为R,引力常量为G,下列说法正确的是()A.该飞船在轨的速度大小为2πRB.月球的质量为4πC.月球两极的重力加速度为32πD.月球的第一宇宙速度为2【考点】第一、第二和第三宇宙速度的物理意义;万有引力与重力的关系(黄金代换);计算天体的质量和密度.【专题】定量思想;推理法;万有引力定律在天体运动中的应用专题;推理论证能力.【答案】C【分析】根据圆周运动线速度和周期关系,求线速度;根据万有引力提供向心力,求月球的质量、第一宇宙速度;在月球表面,根据万有引力等于重力,求重力加速度。【解答】解:A.该飞船在轨的速度大小为v故A错误;B.根据万有引力提供向心力G解得月球的质量为M故B错误;C.在月球表面,根据万有引力等于重力G可得月球两极的重力加速度为g故C正确;D.根据万有引力提供向心力G月球的第一宇宙速度为v故D错误。故选:C。【点评】本题解题关键是掌握规律万有引力提供向心力,在月球表面,万有引力等于重力。5.(2025•三台县模拟)中国空间站和嫦娥六号分别围绕地球和月球做圆周运动,中国空间站的轨道半径为嫦娥六号轨道半径的n倍,中国空间站的运动周期为嫦娥六号运动周期的k倍,根据上述数据可得地球质量与月球质量之比为()A.nk B.kn C.n3k【考点】计算天体的质量和密度.【专题】定量思想;推理法;动量定理应用专题;推理论证能力.【答案】C【分析】在星球表面,物体所受的重力近似等于物体与星球间的万有引力,根据万有引力提供向心力计算质量之比。【解答】解:根据万有引力作为向心力,有G解得M由题知r空=nr嫦,T空=kT嫦解得地球质量与月球质量之比为M地故C正确,ABD错误。故选:C。【点评】此题主要考查了万有引力定律及其应用;解答此类题目一般要把握两条线:一是在星球表面,忽略星球自转的情况下,万有引力近似等于重力;二是根据万有引力提供向心力列方程进行解答。6.(2025•五华区校级模拟)2025年1月7日,实践二十五号卫星在西昌卫星发射中心发射成功,并在离地36000km高空的圆轨道为北斗G7卫星加注142公斤燃料,完成人类首次太空卫星燃料补加及延寿服务。若加注燃料前后G7卫星的轨道半径不变,则()A.加注燃料时,实践二十五号卫星的线速度大于7.9km/s B.加注燃料时,实践二十五号与G7卫星处于平衡状态 C.加注燃料后,G7卫星质量增大,线速度大小不变 D.加注燃料后,G7卫星质量增大,加速度减小【考点】卫星或行星运行参数的计算;第一、第二和第三宇宙速度的物理意义.【专题】比较思想;模型法;人造卫星问题;理解能力.【答案】C【分析】根据第一宇宙速度的意义分析实践二十五号卫星的线速度与第一宇宙速度的关系;在加注燃料时,实践二十五号与G7卫星处于完全失重状态,是非平衡状态;根据万有引力提供向心力列式,得到线速度和加速度表达式,再分析加注燃料后,G7卫星质量增大,线速度和加速度的变化情况。【解答】解:A、第一宇宙速度是人造卫星的最大环绕速度,所以实践二十五号卫星的线速度小于7.9km/s,故A错误;B、在加注燃料时,两卫星相对静止,处于完全失重状态,并非力学平衡状态,故B错误;CD、根据万有引力提供向心力有GMmr解得va=可知加注燃料后,质量增加,但轨道半径不变,线速度和加速度大小均不变,故C正确,D错误。故选:C。【点评】解答本题的关键要掌握万有引力提供向心力这一思路,通过列式分析卫星的线速度、加速度的大小。7.(2025•怀仁市四模)我国计划于2026年发射嫦娥七号,主要任务是前往月球南极寻找水冰存在的证据。未来,嫦娥七号发射后到达月球引力范围,先进入环月圆轨道1,在该轨道上运行的线速度大小为v1、周期为T1;变轨后进入环月圆轨道2,在该轨道上运行的线速度大小为v2、周期为T2,则下列关系正确的是()A.v1T1=v2T2 B.v1C.v1D.v【考点】不同轨道上的卫星或行星(可能含赤道上物体)运行参数的比较.【专题】定量思想;推理法;万有引力定律的应用专题;推理论证能力.【答案】C【分析】根据万有引力提供向心力,结合线速度公式求解。【解答】解:万有引力提供向心力,则G又v解得GM则v13T1=故选:C。【点评】解答本题时,要掌握万有引力提供向心力这条重要思路,并能灵活运用。8.(2025•湖北模拟)科幻作品中,卫星a在某星球的赤道平面内绕该星球转动,其轨道可视为圆,卫星通过发射激光与星球赤道上一固定的观测站P通信,已知该星球半径为R、自转周期为T,卫星轨道半径为2R、周期为2T。引力常量为G,则下列说法正确的是()A.卫星绕星球转动的角速度比星球自转的角速度大 B.卫星的线速度大于该星球赤道上的物体随星球自转的速度 C.卫星相对星球转动一周的时间内,卫星可以与观测站P通信的时间为23D.可以通过变轨调整,使卫星a降低到较低的圆轨道运行,且周期仍为2T【考点】不同轨道上的卫星或行星(可能含赤道上物体)运行参数的比较.【专题】定量思想;推理法;万有引力定律的应用专题;推理论证能力.【答案】C【分析】根据角速度、线速度,卫星的追及和相遇以及牛顿第二定律进行分析解答。【解答】解:A.卫星周期较大,根据ω=2πTB.由v=2πrC.如图在相对转动一周的时间内,由上图结合几何知识知,cosθ=R2R=12,则θ=60°=π3,满足(2πT-2D.由万有引力定律及牛顿第二定律得GMmr2=m故选:C。【点评】考查角速度、线速度,卫星的追及和相遇以及牛顿第二定律,会根据题意进行准确分析解答。二.多选题(共4小题)(多选)9.(2025春•滨海新区期末)已知空间站质量为m,离地面的高度为h,地球的半径为R,地球的质量为M,万有引力常量为G。若空间站可视为绕地心做匀速圆周运动,则下列说法正确的是()A.空间站的线速度大小为Gm(B.空间站的向心加速度大小为GM(C.空间站的运行周期为4πD.空间站的角速度大小为GM【考点】万有引力的基本计算;牛顿第二定律与向心力结合解决问题;开普勒三大定律.【专题】定量思想;归纳法;人造卫星问题;理解能力.【答案】BD【分析】根据万有引力提供向心力,分别写出空间站运行的线速度、角速度、周期和向心加速度的计算式即可。【解答】解:根据GMm(R+h)2=mv2R+h=m(R+h)ω故选:BD。【点评】本题考查了万有引力提供向心力公式是应用。(多选)10.(2025春•湖北期末)航天员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处。若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。已知该星球的半径与地球半径之比为R星:R地=1:4,地球表面重力加速度为g,设该星球表面附近的重力加速度大小为g′,空气阻力不计,忽略地球和星球自转的影响。则()A.g′:g=1:5 B.g′:g=5:2 C.M星:M地=1:20 D.M星:M地=1:80【考点】万有引力与重力的关系(黄金代换);计算天体的质量和密度.【专题】定量思想;推理法;万有引力定律在天体运动中的应用专题;推理论证能力.【答案】AD【分析】由对称性,根据竖直上抛规律,求时间,根据时间求重力加速度之比;在地球表面由万有引力等于重力列式,求质量之比。【解答】解:AB.设初速度为v0,小球做竖直上抛运动,小球在空中运动的时间t=在某星球同理,故g故A正确、B错误;CD.在地球表面由万有引力等于重力GM得M地在某星球同理,则M星故C错误、D正确。故选:AD。【点评】本题解题关键是掌握规律在地球表面由万有引力等于重力,比较基础。(多选)11.(2025春•江岸区期末)“天通一号”03星发射过程简化为如图所示:火箭先把卫星送上椭圆轨道1(P、Q分别是远地点和近地点),卫星再变轨到圆轨道2,最后变轨到轨道3(静止卫星轨道,且与轨道2半径相同)。轨道1、2相切于P点,轨道2、3相交于M、N两点,忽略卫星质量变化。则下列说法正确的是()A.卫星在三个轨道上的周期的关系为:T3=T2>T1 B.由轨道1变至轨道2,卫星在P点沿速度方向向前喷气 C.卫星在轨道2上经过M点的速度和在轨道3上经过N点的速度相同 D.卫星在轨道1和在轨道2上经过P点时的向心加速度相同【考点】卫星的发射及变轨问题;开普勒三大定律;不同轨道上的卫星或行星(可能含赤道上物体)运行参数的比较.【专题】应用题;设计与制作题;定量思想;推理法;万有引力定律的应用专题.【答案】AD【分析】根据开普勒第三定律比较周期大小关系;根据卫星变轨原理分析答题;万有引力提供向心力,应用牛顿第二定律求出线速度与加速度,然后分析答题。【解答】解:A、由于轨道2与轨道3的半长轴相等且大于轨道1的半长轴,由开普勒第三定律可知T3=T2>T1,故A正确;B、由轨道1变至轨道2,卫星需要再P点加速,卫星在P点沿速度方向向后喷气,故B错误;C、万有引力提供向心力,由牛顿第二定律得GMmr2=mv2r,解得v=GMr,由于轨道2与轨道3的半径相等,则卫星在轨道2上经过MD、万有引力提供向心力,由牛顿第二定律得GMmr2=ma,解得a=GMr2,卫星在轨道1和在轨道2上经过P点时的轨道半径r相等,则卫星在轨道1和在轨道故选:AD。【点评】知道万有引力提供向心力,分析清楚卫星的运动过程,应用开普勒第三定律与牛顿第二定律即可解题。(多选)12.(2025春•西安期末)2025年1月,中国科学院紫金山天文台发现了一颗新彗星。据观测该彗星的轨道为椭圆,其位置介于木星轨道与天王星轨道之间。与土星轨道交于P、Q两点。只考虑太阳对各星体的引力,行星的轨道可视为圆形。下列说法正确的是()A.该彗星的周期小于天王星的周期 B.该彗星在P点的加速度比土星在P点的加速度小 C.该彗星在远日点的运行速度小于木星的运行速度 D.该彗星与太阳的连线和土星与太阳的连线在相同时间内扫过的面积一定相同【考点】不同轨道上的卫星或行星(可能含赤道上物体)运行参数的比较;开普勒三大定律.【专题】应用题;定量思想;推理法;万有引力定律的应用专题;分析综合能力.【答案】AC【分析】根据开普勒第三定律比较周期关系;应用牛顿第二定律求出加速度,然后比较加速度大小关系;根据万有引力公式应用牛顿第二定律求出线速度,然后分析答题;根据开普勒第二定律分析答题。【解答】解:A、由图示情景可知,彗星的半长轴小于天王星的半长轴,由开普勒第三定律可知,彗星的周期小于天王星的周期,故A正确;B、由牛顿第二定律得GMmr2=ma,解得a=GMr2,由于经过P点时的r相等,则该彗星在C、万有引力提供向心力,由牛顿第二定律得GMmr2=mv2r,解得vD、彗星与太阳连线在相等时间内扫过的面积相等,土星与太阳的连线在相等时间内扫过的面积相等,根据现有条件无法确定该彗星与太阳的连线和土星与太阳的连线在相同时间内扫过的面积关系,故D错误。故选:AC。【点评】分析清楚彗星、土星与天王星的运行情况与轨道关系,应用万有引力公式与牛顿第二定律、开普勒定律即可解题。三.填空题(共4小题)13.(2025春•杨浦区校级期末)“嫦娥六号”环绕月球做轨道半径为r、周期为T的匀速圆周运动。“嫦娥六号”绕月球运动的向心加速度大小为4π2T2r;月球与地球质量的比值为k、半径的比值为n,则“嫦娥六号”携带的五星红旗在月球表面与在地球表面所受重力大小的比值近似为【考点】万有引力与重力的关系(黄金代换);牛顿第二定律与向心力结合解决问题.【专题】定量思想;推理法;万有引力定律在天体运动中的应用专题;推理论证能力.【答案】4π2T【分析】根据周期求向心力加速度;在星球表面,万有引力等于重力,求重力比。【解答】解:“嫦娥六号”绕月球运动的向心加速度大小为a=在星球表面,万有引力等于重力,则有GMm解得重力加速度g因为月球与地球质量的比值为k、半径的比值为n,则“嫦娥六号”携带的五星红旗在月球表面与在地球表面所受重力大小的比值近似为m故答案为:4π2T【点评】本题解题关键是掌握规律,在星球表面,万有引力等于重力。14.(2025春•河北月考)火星是一颗类地行星,虽然载人登陆火星存在诸多挑战,但人类也在逐步将这一愿景变为现实。已知火星可近似看作球体,其半径为R,若能实现载人登陆火星,则登陆火星后在火星表面h(h≪R)高度处静止释放一个质量为m的小球,若测得小球落地的时间为t,引力常量为G,不考虑火星自转及空气阻力的影响,由此可知,小球落地过程中火星对小球的引力所做的功W=2mh2t2,小球落地瞬间引力的瞬时功率P=4mh2t3;火星的质量M=2【考点】第一、第二和第三宇宙速度的物理意义;宇宙速度的计算;万有引力与重力的关系(黄金代换).【专题】定量思想;推理法;万有引力定律的应用专题;推理论证能力.【答案】2mh2t2;4m【分析】根据自由落体运动公式以及做功公式综合求解火星对小球的引力所做的功;先利用速度公式求解速度,再根据瞬时功率求解公式求解瞬时功率;根据万有引力提供重力列式求解火星的质量;利用v=gR【解答】解:根据h=得,火星表面的重力加速度g=万有引力所做的功W=小球落地的瞬时速度v=瞬时功率P=根据mg=得火星的质量M=根据mg=火星的第一宇宙速度v=故答案为:2mh2t2;4m【点评】本题考查了万有引力定律理论与自由落体运动的综合,通过自由落体运动的规律求出火星表面的重力加速度是关键,掌握万有引力提供向心力和万有引力等于重力这两个重要理论,并能灵活运用。15.(2025春•唐山月考)火星是一颗类地行星,虽然载人登陆火星存在诸多挑战,但人类也在逐步将这一愿景变为现实。已知火星可近似看作球体,其半径为R,若能实现载人登陆火星,则登陆火星后在火星表面h(h≪R)高度处静止释放一个质量为m的小球,若测得小球落地的时间为t,引力常量为G,不考虑火星自转及空气阻力的影响,由此可知,小球落地过程中火星对小球的引力所做的功W=2mh2t2,小球落地瞬间引力的瞬时功率P=4mh2t3;火星的质量M=2【考点】宇宙速度的计算;万有引力与重力的关系(黄金代换);第一、第二和第三宇宙速度的物理意义.【专题】定量思想;推理法;万有引力定律的应用专题;推理论证能力.【答案】2mh2t2;【分析】根据自由落体规律求解重力加速度;根据重力做功表达式求解重力做功;求解小球落地的瞬时速度,从而求解瞬时功率;根据火星表面万有引力等于重力求解火星质量,结合第一宇宙速度表达式求解第一宇宙速度。【解答】解:根据h=1万有引力所做的功W小球落地的瞬时速度v瞬时功率P根据mg得火星的质量M根据mg火星的第一宇宙速度v故答案为:2mh2t2;【点评】本题考查万有引力定律的应用,解题关键是能够根据自由落体规律求解重力加速度,结合各个物理量相关表达式求解。16.(2025•福建模拟)某星球表面不存在大气层,在该星球将一质点以初速度v0竖直向上抛出。从抛出时开始计时,s﹣t图象如图所示,根据图像v0=6m/s,假设该星球的半径与地球近似相等,则该星球的密度是地球的0.15倍。【考点】万有引力与重力的关系(黄金代换);竖直上抛运动的规律及应用.【专题】定量思想;推理法;万有引力定律的应用专题;分析综合能力.【答案】6;0.15【分析】物体从行星表面竖直上抛,由图读出最大高度和上升的时间,根据运动学公式求出初速度和重力加速度;根据重力和万有引力关系,再结合密度公式求解星球密度表达式即可求解。【解答】解:最大高度为12m,整个竖直上抛的时间为8s,竖直上抛运动的上升过程和下降过程具有对称性,所以下降时间为4s根据h=1物体的初速度v0=gt=1.5×4m/s=6m/s根据万有引力提供向心力,万有引力等于重力,则有mg=GMm解得球星密度ρ同理可得地球密度ρ'=3故答案为:6,0.15【点评】本题首先考查读图能力,图上能读出最大高度、上升和下落时间等等;其次要灵活选择运动学公式求解.四.解答题(共4小题)17.(2025春•江阴市校级期末)我国计划2030年前实现登月开展科学探索,载人登月的初步方案是:采用两枚运载火箭分别将月面着陆器和载人飞船送至地月转移轨道。若飞船到达月球前,先在离月球表面高度等于月球半径处绕月球做匀速圆周运动,周期为T。已知引力常量为G,月球的半径为r,忽略月球的自转。求:(1)月球的质量;(2)月球第一宇宙速度的大小。【考点】万有引力与重力的关系(黄金代换);计算天体的质量和密度;宇宙速度的计算.【专题】定量思想;推理法;万有引力定律的应用专题;推理论证能力.【答案】(1)月球的质量为32π(2)月球第一宇宙速度的大小为42【分析】(1)根据万有引力提供向心力列式解答;(2)根据牛顿第二定律进行分析解答。【解答】解:(1)根据万有引力提供向心力有GMm(2r)2(2)根据牛顿第二定律GMmr2=m答:(1)月球的质量为32π(2)月球第一宇宙速度的大小为42【点评】考查万有引力定律的应用,会根据题意进行准确分析解答。18.(2025春•南通期末)如图所示,地球绕太阳运动的轨道可近似为圆,哈雷彗星的运动轨道是一个非常扁的椭圆,已知哈雷彗星轨道半长轴为地球轨道半径的k倍,地球公转周期为T。(1)求哈雷彗星的公转周期T′;(2)若太阳中心到哈雷彗星轨道近日点、远日点的距离分别为r1、r2,求哈雷彗星在近日点和远日点的加速度大小之比a1【考点】卫星或行星运行参数的计算;开普勒三大定律.【专题】计算题;定量思想;推理法;万有引力定律的应用专题;分析综合能力.【答案】(1)哈雷彗星的公转周期T′是k3T(2)哈雷彗星在近日点和远日点的加速度大小之比a1a2【分析】(1)根据开普勒第三定律求解。(2)应用牛顿第二定律求出加速度,然后求出加速度之比。【解答】解:(1)由开普勒第三定律得R解得T′=k(2)由牛顿第二定律得GMmr2=ma则a答:(1)哈雷彗星的公转周期T′是k3T(2)哈雷彗星在近日点和远日点的加速度大小之比a1a2【点评】本题考查了开普勒定律与万有引力定律的应用,根据题意应用开普勒第三定律、万有引力公式与牛顿第二定律即可解题。19.(2025春•滨海新区期末)如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动(可视为匀速圆周运动)的轨道舱。已知月球的半径为R,轨道舱到月球表面的距离为h,引力常量为G,月球表面的重力加速度为g,不考虑月球的自转。求:(1)月球的质量M;(2)轨道舱绕月飞行的周期T;(3)月球的“第一宇宙速度”大小v。【考点】卫星或行星运行参数的计算;计算天体的质量和密度.【专题】定量思想;方程法;万有引力定律的应用专题;理解能力.【答案】(1)月球的质量为gR(2)轨道舱绕月飞行的周期为4π(3)月球的“第一宇宙速度”大小为gR。【分析】(1)根据万有引力与重力的关系求解月球的质量;(2)根据万有引力提供向心力求解轨道舱绕月飞行的周期;(3)第一宇宙速度等于卫星贴近月面做匀速圆周运动的环绕速度,根据万有引力提供向心力求解月球的“第一宇宙速度”大小。【解答】解:(1)设月球表面的某个物体质量为m,可知:G解得月球的质量:M=(2)设轨道舱质量为m',根据万有引力提供向心力,有:G又有:ω解得轨道舱绕月飞行的周期:T=(3)设物体绕月球表面附近做匀速圆周运动,近似认为重力提供向心力,则有:m解得月球的“第一宇宙速度”大小:v=答:(1)月球的质量为gR(2)轨道舱绕月飞行的周期为4π(3)月球的“第一宇宙速度”大小为gR。【点评】本题主要是考查了万有引力定律及其应用;解答此类题目一般要把握两条线:一是在星球表面,忽略星球自转的情况下,万有引力等于重力;二是根据万有引力提供向心力列方程进行解答。20.(2025春•武汉期末)2025年3月10日,我国在西昌卫星发射中心使用长征三号乙运载火箭,成功将通信技术试验卫星十五号发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。假设卫星进入预定轨道后以速度v绕地球做匀速圆周运动,卫星的轨道半径为r,地球的半径为R,引力常量为G,忽略地球自转的影响。请用以上物理量表达:(1)地球的质量M;(2)地球表面的重力加速度大小g;(3)地球的第一宇宙速度。【考点】宇宙速度的计算;万有引力与重力的关系(黄金代换);计算天体的质量和密度.【专题】定量思想;推理法;万有引力定律的应用专题;推理论证能力.【答案】(1)地球的质量M为v2(2)地球表面的重力加速度大小g为v2(3)地球的第一宇宙速度为vr【分析】(1)根据牛顿第二定律列式求解;(2)根据黄金代换式列式解答;(3)根据万有引力提供向心力列式解答。【解答】解:(1)设卫星的质量为m1,有GMm1(2)对地面上质量为m2的物体,有GMm2(3)对质量为m3的近地卫星,有GMm3答:(1)地球的质量M为v2(2)地球表面的重力加速度大小g为v2(3)地球的第一宇宙速度为vr【点评】考查万有引力定律的应用和黄金代换式,会根据题意进行准确分析解答。

考点卡片1.竖直上抛运动的规律及应用【知识点的认识】1.定义:物体以初速度v0竖直向上抛出后,只在重力作用下而做的运动,叫做竖直上抛运动。2.特点:(1)初速度:v0≠0;(2)受力特点:只受重力作用(没有空气阻力或空气阻力可以忽略不计);(3)加速度:a=g,其大小不变,方向始终竖直向下。3.运动规律:取竖直向上的方向为正方向,有:vt=v0﹣gt,h=v0t-12gtvt24.几个特征量:(1)上升的最大高度hmax=v(2)质点在通过同一高度位置时,上升速度与下落速度大小相等;上升到最大高度处所需时间t上和从最高处落回到抛出点所需时间相等t下,t上=t下=v【命题方向】例1:某物体以30m/s的初速度竖直上抛,不计空气阻力,g取10m/s2.5s内物体的()A.路程为65mB.位移大小为25m,方向向上C.速度改变量的大小为10m/sD.平均速度大小为13m/s,方向向上分析:竖直上抛运动看作是向上的匀减速直线运动,和向下的匀加速直线运动,明确运动过程,由运动学公式即可求出各物理量。解答:由v=gt可得,物体的速度减为零需要的时间t=v0g=3010A、路程应等于向上的高度与后2s内下落的高度之和,由v2=2gh可得,h=v22g=45m,后两s下落的高度h'=12gt′2=20m,故总路程s=(45+20B、位移h=v0t-12gt2=25m,位移在抛出点的上方,故C、速度的改变量△v=gt=50m/s,方向向下,故C错误;D、平均速度v=ht=25故选:AB。点评:竖直上抛运动中一定要灵活应用公式,如位移可直接利用位移公式求解;另外要正确理解公式,如平均速度一定要用位移除以时间;速度变化量可以用△v=at求得。例2:在竖直的井底,将一物块以11m/s的初速度竖直向上抛出,物体冲出井口再落回到井口时被人接住,在被人接住前1s内物体的位移是4m,位移方向向上,不计空气阻力,取g=10m/s2.求:(1)物体从抛出点到被人接住所经历的时间;(2)竖直井的深度。分析:竖直上抛运动的处理方法有整体法和分段法,要求路程或上升的最大高度时一般用分段法,此题可以直接应用整体法进行求解。解答:(1)设最后1s内的平均速度为v则:v=平均速度等于中间时刻的瞬时速度,即接住前0.5s的速度为v1=4m/s设物体被接住时的速度为v2,则v1=v2﹣gt得:v2=4+10×0.5=9m/s,则物体从抛出点到被人接住所经历的时间t=v2-v0g(2)竖直井的深度即抛出到接住物块的位移,则h=v0t-12gt2=11×1.2-12×10×答:(1)物体从抛出点到被人接住所经历的时间为1.2s(2)竖直井的深度为6m。点评:竖直上抛运动的处理方法有整体法和分段法,要求路程或上升的最大高度时一般用分段法,此题只有竖直向上的匀减速运动,直接应用整体法求解即可。【解题方法点拨】1.竖直上抛运动的两种研究方法:(1)分段法:上升阶段是匀减速直线运动,下落阶段是自由落体运动,下落过程是上升过程的逆过程。(2)整体法:从全程来看,加速度方向始终与初速度v0的方向相反,所以可把竖直上抛运动看成一个匀变速直线运动,要特别注意v0、vt、g、h等矢量的正、负号。一般选取竖直向上为正方向,v0总是正值,上升过程中vt为正值,下落过程中vt为负值;物体在抛出点以上时h为正值,物体在抛出点以下时h为负值。住:竖直上抛运动的上升阶段和下降阶段具有对称性:①速度对称:上升和下降过程经过同一位置时速度等大、反向;②时间对称:上升和下降过程经过同一段高度的上升时间和下降时间相等。2.牛顿第二定律与向心力结合解决问题【知识点的认识】圆周运动的过程符合牛顿第二定律,表达式Fn=man=mω2r=mv2r=【命题方向】我国著名体操运动员童飞,首次在单杠项目中完成了“单臂大回环”:用一只手抓住单杠,以单杠为轴做竖直面上的圆周运动.假设童飞的质量为55kg,为完成这一动作,童飞在通过最低点时的向心加速度至少是4g,那么在完成“单臂大回环”的过程中,童飞的单臂至少要能够承受多大的力.分析:运动员在最低点时处于超重状态,由单杠对人拉力与重力的合力提供向心力,根据牛顿第二定律求解.解答:运动员在最低点时处于超重状态,设运动员手臂的拉力为F,由牛顿第二定律可得:F心=ma心则得:F心=2200N又F心=F﹣mg得:F=F心+mg=2200+55×10=2750N答:童飞的单臂至少要能够承受2750N的力.点评:解答本题的关键是分析向心力的来源,建立模型,运用牛顿第二定律求解.【解题思路点拨】圆周运动中的动力学问题分析(1)向心力的确定①确定圆周运动的轨道所在的平面及圆心的位置.②分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力,该力就是向心力.(2)向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加向心力.(3)解决圆周运动问题步骤①审清题意,确定研究对象;②分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;③分析物体的受力情况,画出受力示意图,确定向心力的来源;④根据牛顿运动定律及向心力公式列方程.3.天体运动的探索历程【知识点的认识】近代天体物理学的发展托勒密:地心宇宙,即认为地球是宇宙的中心。一切天体围绕地球运行。哥白尼:日心说,即认为太阳是宇宙的中心,一切天体围绕太阳运行。伽利略:发明天文望远镜,证实了日心说的正确性。布鲁诺:日心说的支持者与推动者,哥白尼死后极大的发展了日心说的理论。第谷:观测星体运动,并记录数据。开普勒:潜心研究第谷的观测数据。以20年的时间提出了开普勒三定律。牛顿:在前人的基础上整理总结得出了万有引力定律。【命题方向】下列说法正确的是()A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的分析:要判断出正确的选项必须了解地心说和日心说,具体内容为:地心说:认为地球是静止不动,是宇宙的中心,宇宙万物都绕地球运动;日心说:认为太阳不动,地球和其他行星都绕太阳运动,然后结合开普勒行星运动定律来判断.解答:A、由开普勒行星运动定律知“地心说”是错误的,所以,选项A错误。B、太阳系在银河系中运动,银河系也在运动,所以,选项B错误。C、由开普勒行星运动定律知地球是绕太阳运动的一颗行星,所以,选项C正确。D、从现在的观点看地心说和日心说都是错误的,都是有其时代局限性的,所以,选项D正确。故选:CD。点评:本题处理好关键要了解地心说和日心说的两种说法的区别,澄清对天体运动神秘、模糊的认识,了解每一种学说的提出都有其时代的局限性,理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的.【解题思路点拨】牢记近代天体物理学发展的过程中,不同的人所做出的不同贡献。4.开普勒三大定律【知识点的认识】开普勒行星运动三大定律基本内容:1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。2、开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积。3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。即:k=在中学阶段,我们将椭圆轨道按照圆形轨道处理,则开普勒定律描述为:1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心;2.对于某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动;3.所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即:R3【命题方向】(1)第一类常考题型是考查开普勒三个定律的基本认识:关于行星绕太阳运动的下列说法正确的是()A.所有行星都在同一椭圆轨道上绕太阳运动B.行星绕太阳运动时太阳位于行星轨道的中心处C.离太阳越近的行星的运动周期越长D.所有行星轨道半长轴的三次方跟公转周期的二次方的比值都相等分析:开普勒第一定律是太阳系中的所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。开普勒第三定律中的公式R3T解:A、开普勒第一定律可得,所有行星都绕太阳做椭圆运动,且太阳处在所有椭圆的一个焦点上。故A错误;B、开普勒第一定律可得,行星绕太阳运动时,太阳位于行星轨道的一个焦点处,故B错误;C、由公式R3T2D、开普勒第三定律可得,所以行星轨道半长轴的三次方跟公转周期的二次方的比值都相等,故D正确;故选:D。点评:行星绕太阳虽然是椭圆运动,但我们可以当作圆来处理,同时值得注意是周期是公转周期。(2)第二类常考题型是考查开普勒第三定律:某行星和地球绕太阳公转的轨道均可视为圆。每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径比为()A.(N+1N)23BC.(N+1N)32D分析:由图可知行星的轨道半径大,那么由开普勒第三定律知其周期长,其绕太阳转的慢。每过N年,该行星会运行到日地连线的延长线上,说明N年地球比行星多转1圈,即行星转了N﹣1圈,从而再次在日地连线的延长线上,那么,可以求出行星的周期是NN解:A、B、C、D:由图可知行星的轨道半径大,那么由开普勒第三定律知其周期长。每过N年,该行星会运行到日地连线的延长线上,说明从最初在日地连线的延长线上开始,每一年地球都在行星的前面比行星多转圆周的N分之一,N年后地球转了N圈,比行星多转1圈,即行星转了N﹣1圈,从而再次在日地连线的延长线上。所以行星的周期是NN-1年,根据开普勒第三定律有r地3r行3=T地故选:B。点评:解答此题的关键由题意分析得出每过N年地球比行星多围绕太阳转一圈,由此求出行星的周期,再由开普勒第三定律求解即可。【解题思路点拨】(1)开普勒行星运动定律是对行星绕太阳运动规律的总结,它也适用于其他天体的运动。(2)要注意开普勒第二定律描述的是同一行星离中心天体的距离不同时的运动快慢规律,开普勒第三定律描述的是不同行星绕同一中心天体运动快慢的规律。(3)应用开普勒第三定律可分析行星的周期、半径,应用时可按以下步骤分析:①首先判断两个行星的中心天体是否相同,只有两个行星是同一个中心天体时开普勒第三定律才成立。②明确题中给出的周期关系或半径关系。③根据开普勒第三定律列式求解。5.万有引力的基本计算【知识点的认识】1.万有引力定律的内容和计算公式为:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方程反比。即FG=6.67×10﹣11N・m2/kg22.如果已知两个物体(可视为质点)的质量和距离就可以计算他们之间的万有引力。【命题方向】如下图,两球的质量均匀分布,大小分别为M1与M2,则两球间万有引力大小为()A、GM1M2r2B、GM1M2分析:根据万有引力定律的内容,求出两球间的万有引力大小.解答:两个球的半径分别为r1和r2,两球之间的距离为r,所以两球心间的距离为r1+r2+r,根据万有引力定律得:两球间的万有引力大小为F=GM故选:D。点评:对于质量均匀分布的球,公式中的r应该是两球心之间的距离.【解题思路点拨】计算万有引力的大小时要注意两个物体之间的距离r是指两个物体重心之间的距离。6.万有引力与重力的关系(黄金代换)【知识点的认识】对地球上的物体而言,受到的万有引力要比地球自转引起的物体做圆周运动所需的向心力大的多,所以通常可以忽略地球自转带来的影响,近似认为万有引力完全等于重力。即GMmR化简得到:GM=gR2其中g是地球表面的重力加速度,R表示地球半径,M表示地球的质量,这个式子的应用非常广泛,被称为黄金代换公式。【命题方向】火星探测器着陆器降落到火星表面上时,经过多次弹跳才停下.假设着陆器最后一次弹跳过程,在最高点的速度方向是水平的,大小为v0,从最高点至着陆点之间的距离为s,下落的高度为h,如图所示,不计一切阻力.(1)求火星表面的重力加速度g0.(2)已知万有引力恒量为G,火星可视为半径为R的均匀球体,忽略火星自转的影响,求火星的质量M.分析:根据平抛运动规律求出星球表面重力加速度.运用黄金代换式GM=gR2求出问题.解答:(1)着陆器从最高点落至火星表面过程做平抛运动,由平抛规律得:水平方向上,有x=v0t①竖直方向上,有h=12g0t2着陆点与最高点之间的距离s满足s2=x2+h2③由上3式解得火星表面的重力加速度g0=2h(2)在火星表面的物体,重力等于火星对物体的万有引力,得mg0=GMmR2把④代入⑤解得火星的质量M=答:(1)火星表面的重力加速度g0是2h(2)火星的质量M是2h点评:重力加速度g是天体运动研究和天体表面宏观物体运动研究联系的物理量.把星球表面的物体运动和天体运动结合起来是考试中常见的问题.【解题思路点拨】1.黄金代换式不止适用于地球,也试用于其他一切天体,其中g表示天体表面的重力加速度、R表示天体半径、M表示天体质量。2.应用黄金代换时要注意抓住如“忽略天体自转”、“万有引力近似等于重力”、“天体表面附近”等关键字。7.计算天体的质量和密度【知识点的认识】1.天体质量的计算(1)重力加速度法若已知天体(如地球)的半径R及其表面的重力加速度g,根据在天体表面上物体的重力近似等于天体对物体的引力,得mg=Gm1m2R2(2)环绕法借助环绕中心天体做匀速圆周运动的行星(或卫星)计算中心天体的质量,俗称“借助外援法”。常见的情况如下:2.天体密度的计算若天体的半径为R,则天体的密度ρ=M43πR特殊情况:当卫星环绕天体表面运动时,卫星的轨道半径r可认为等于天体半径R,则ρ=【命题方向】近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础。如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T,则火星的平均密度ρ的表达式为(k为某个常量)()A.ρ=kTB.ρ=kTC.ρ=kT分析:研究火星探测器绕火星做匀速圆周运动,根据万有引力提供向心力,列出等式求出中心体的质量。根据密度公式表示出密度。解答:研究火星探测器绕火星做匀速圆周运动,根据万有引力提供向心力,列出等式:mr4π2T得:M=4则火星的密度:ρ=由①②得火星的平均密度:ρ=3π则ABC错误,D正确。故选:D。点评:运用万有引力定律求出中心体的质量。能够运用物理规律去表示所要求解的物理量。向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用。【解题思路点拨】能否计算得出天体的质量和密度的技巧如下:①计算中心天体的质量需要知道:a、行星或卫星运行的轨道半径,以及运行的任一参数(如线速度或角速度或向心加速度等)b、如果是忽略天体自转、或在天体表面附近、或提示万有引力近似等于重力,则可以应用黄金代换计算中心天体质量,此时需要知道天体的半径,以及天体表面的重力加速度。②计算中心天体的密度需要知道只要能求出天体质量,并知道天体自身半径就可以求出中心天体的密度8.第一、第二和第三宇宙速度的物理意义【知识点的认识】一、宇宙速度1.第一宇宙速度(环绕速度)(1)大小:7.9km/s.(2)意义:①卫星环绕地球表面运行的速度,也是绕地球做匀速圆周运动的最大速度.②使卫星绕地球做匀速圆周运动的最小地面发射速度.2.第二宇宙速度(1)大小:11.2km/s(2)意义:使卫星挣脱地球引力束缚的最小地面发射速度.第二宇宙速度(脱离速度)在地面上发射物体,使之能够脱离地球的引力作用,成为绕太阳运动的人造行星或绕其他行星运动的人造卫星所必需的最小发射速度,其大小为v=11.2km/s.3.第三宇宙速度(1)大小:16.7km/s(2)意义:使卫星挣脱太阳引力束缚的最小地面发射速度.第三宇宙速度(逃逸速度)在地面上发射物体,使之最后能脱离太阳的引力范围,飞到太阳系以外的宇宙空间所必需的最小速度,其大小为v=16.7km/s.三种宇宙速度比较宇宙速度数值(km/s)意义第一宇宙速度7.9这是卫星绕地球做圆周运动的最小发射速度第二宇宙速度11.2这是物体挣脱地球引力束缚的最小发射速度第三宇宙速度16.7这是物体挣脱太阳引力束缚的最小发射速度【命题方向】(1)第一类常考题型是考查对第一宇宙速度概念的理解:关于第一宇宙速度,下列说法正确的是()A.它是人造地球卫星绕地球作匀速圆周运动的最大速度B.它是人造地球卫星在圆形轨道上的最小运行速度C.它是能使卫星绕地球运行的最小发射速度D.它是人造卫星绕地球作椭圆轨道运行时在近地点的速度分析:第一宇宙速度是在地面发射人造卫星所需的最小速度,也是圆行近地轨道的环绕速度,也是圆形轨道上速度的最大值.解:第一宇宙速度是近地卫星的环绕速度v=GMR因而第一宇宙速度是人造地球卫星绕地球作匀速圆周运动的最大速度,A正确、B错误;在近地面发射人造卫星时,若发射速度等于第一宇宙速度,重力恰好等于向心力,做匀速圆周运动,若发射速度大于第一宇宙速度,重力不足提供向心力,做离心运动,即会在椭圆轨道运动,因而C正确、D错误;故选AC.点评:要使平抛的物体成为绕地球做运动的卫星,其速度必须小于或等于第一宇宙速度,当取等号时为圆轨道.【解题思路点拨】1.三个宇宙速度都有自身的物理意义,要准确记住其意义及具体的数值。2.每个天体都有自己的宇宙速度,课本上介绍的只是地球的三大宇宙速度。9.宇宙速度的计算【知识点的认识】1.第一宇宙速度是指最大的环绕速度。对地球而言,当卫星以最大的环绕速度绕地球运行时,此时卫星的轨道半径几乎等于地球的半径R,设此时速度为v,则根据万有引力提供向心力有GMmR2=mv又在地球表面附近有GM=gR2所以v=所以如果知道地球表面的重力加速度和地球半径就可以计算出地球的第一宇宙速度了。2.这一规律对其他天体同样成立。【命题方向】地球的第一宇宙速度为v1,若某行星质量是地球质量的4倍,半径是地球半径的12倍分析:物体在地面附近绕地球做匀速圆周运动的速度叫做第一宇宙速度,大小7.9km/s,可根据卫星在圆轨道上运行时的速度公式v=GM解答:设地球质量M,某星球质量4M,地球半径r,某星球半径0.5r;由万有引力提供向心力做匀速圆周运动得:GMm解得:卫星在圆轨道上运行时的速度公式v=分别代入地球和某星球的各物理量解得:v星球:v地球=8:所以该行星的第一宇宙速度为22v1答:该行星的第一宇宙速度22v1点评:本题要掌握第一宇宙速度的定义,正确利用万有引力公式列出第一宇宙速度的表达式.【解题思路点拨】1.第一宇宙速度是卫星的最小发射速度,是最大的环绕速度,当卫星以该速度运行时,相当于在中心天体附近绕行,轨道半径近似等于中心天体的半径。2.卫星绕天体做圆周运动时,如果已知环绕周期,也可以根据v=23.第一宇宙速度的计算公式v=GM10.卫星或行星运行参数的计算【知识点的认识】对于一般的人造卫星而言,万有引力提供其做圆周运动的向心力。于是有:①GMmr2=mv②GMmr2=mω2r③GMmr2=m4④GMmr2=ma→a在卫星运行的过程中,根据题目给出的参数,选择恰当的公式求解相关物理量。【解题思路点拨】2005年10月12日,我国成功地发射了“神舟”六号载人宇宙飞船,飞船进入轨道运行若干圈后成功实施变轨进入圆轨道运行,经过了近5天的运行后,飞船的返回舱顺利降落在预定地点.设“神舟”六号载人飞船在圆轨道上绕地球运行n圈所用的时间为t,若地球表面重力加速度为g,地球半径为R,求:(1)飞船的圆轨道离地面的高度;(2)飞船在圆轨道上运行的速率.分析:研究“神舟”六号载人飞船在圆轨道上绕地球做匀速圆周运动,根据万有引力等于向心力列出方程,根据地球表面忽略地球自转时万有引力等于重力列出方程进行求解即可.解答:(1)“神舟”六号载人飞船在圆轨道上绕地球运行n圈所用的时间为t,T=研究“神舟”六号载人飞船在圆轨道上绕地球做匀速圆周运动,根据万有引力定律分别对地球表面物体和飞船列出方程得:G⋅根据地球表面忽略地球自转时万有引力等于重力列出方程得:G⋅r=R+h④由①②③④解得:h②由线速度公式得:v=∴v答:(1)飞船的圆轨道离地面的高度是3g(2)飞船在圆轨道上运行的速率是32点评:本题要掌握万有引力的作用,天体运动中万有引力等于向心力,地球表面忽略地球自转时万有引力等于重力,利用两个公式即可解决此问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论