难点解析-人教版8年级数学下册《平行四边形》章节测试练习题(含答案解析)_第1页
难点解析-人教版8年级数学下册《平行四边形》章节测试练习题(含答案解析)_第2页
难点解析-人教版8年级数学下册《平行四边形》章节测试练习题(含答案解析)_第3页
难点解析-人教版8年级数学下册《平行四边形》章节测试练习题(含答案解析)_第4页
难点解析-人教版8年级数学下册《平行四边形》章节测试练习题(含答案解析)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是()A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④2、顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形3、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A.2.5km B.4.5km C.5km D.3km4、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是()A.是等腰三角形 B.和全等C.折叠后得到的图形是轴对称图形 D.折叠后和相等5、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则纸条的宽为()A.5cm B.4.8cm C.4.6cm D.4cm第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为_____.2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.3、如图,在直角三角形ABC中,∠B=90°,点D是AC边上的一点,连接BD,把△CBD沿着BD翻折,点C落在AB边上的点E处,得到△EBD,连接CE交BD于点F,BG为△EBD的中线.若BC=4,△EBG的面积为3,则CD的长为____________4、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_________cm.5、如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点处,折痕交CD边于点E.若点P是直线l上的一个动点,则+PB的最小值_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.(1)求证:四边形ADCE是菱形;(2)若AB=8,∠DAE=60°,则△ACB的面积为(直接填空).2、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.

(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段.3、如图,△ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF.(1)求证:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角△DMN,其中DN=MN=,连接FM,点O为FM的中点,当△DMN绕点D旋转时,求证:EO的最大值等于BC.4、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.(1)求证:;(2)若,,求BG的长.5、如图,已知矩形中,点,分别是,上的点,,且.(1)求证:;(2)若,求:的值.-参考答案-一、单选题1、C【解析】【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.2、C【解析】【分析】如图,矩形中,利用三角形的中位线的性质证明,再证明四边形是平行四边形,再证明从而可得结论.【详解】解:如图,矩形中,分别为四边的中点,,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.3、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,∴CM=AB,∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.4、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.【详解】解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.5、B【解析】【分析】由题意作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据勾股定理求出AB,最后利用菱形ABCD的面积建立关系得出纸条的宽AR的长.【详解】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四边形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面积,即,解得:cm.故选:B.【点睛】本题主要考查菱形的判定以及勾股定理等知识,解题的关键是掌握一组邻边相等的平行四边形是菱形以及菱形的面积等于对角线相乘的一半.二、填空题1、①②③④【解析】【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF=60°,再利用角的等量代换,即可得出结论①正确;②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④延长OE至,使=OD,连接,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论④正确;【详解】解:①设与的交点为如图所示:∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE为等边三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故结论①正确;②如图,连接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至,使=OD,连接,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,∵∴设,则∴在中,即解得:∴=OD=AD=,∴点E运动的路程是,故结论④正确;故答案为:①②③④.【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.2、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.3、【解析】【分析】由折叠的性质可得,,,,由勾股定理可得,,根据题意可得,,求得的长度,即可求解.【详解】解:由折叠的性质可得,,,,∴为等腰直角三角形,为的中点,∴由勾股定理可得,∴∵BG为△EBD的中线,△EBG的面积为3∴,解得∴由勾股定理得:故答案为:【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵如图,H、I、J分别为BC,AC,AB的中点∴,,又∵∴∵AB:AC:BC=4:5:6,即BC边最长∴故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5、【解析】【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+PB最短.【详解】过点D作DM⊥AB交BA的延长线于点M,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值为,故答案为:.【点睛】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.三、解答题1、(1)见解析;(2)【分析】(1)由AD//CE,CD//AE,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.【详解】解:(1)∵∥,∥,∴四边形是平行四边形.∵,是的中点,∴,∴四边形是菱形;(2)∵四边形是菱形,,∴.∵在Rt△中,,,,∴,∴.∴.【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.2、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四边形ABDE为平行四边形,∴AB=DE,∴CD=ED,∴点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF为等边三角形,∴CF=CD=DF=AB=ED.【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.3、(1)见解析;(2)2;(3)见解析【分析】(1)由△ABC是等边三角形,可得∠ABC=60°,由D、F关于直线BE对称,得到BF=BD,则∠BFD=∠BDF,由三角形外角的性质得到∠BFD+∠BDF=∠ABD,则∠BDF=∠BFD=30°;(2)设,由D、F关于直线BE对称,得到∠BGD=∠BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性质和勾股定理得,,证明△EAB≌△DAC得到,再由,得到,由此求解即可;(3)连接OG,先求出,证明OG是三角形DMF的中位线,得到,再根据两点之间线段最短可知,则OE的最大值等于BC.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵D、F关于直线BE对称,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;(2)设,∵D、F关于直线BE对称,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴,∴,由旋转的性质可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论