难点解析-重庆市彭水一中7年级数学下册变量之间的关系专题训练试题(含详解)_第1页
难点解析-重庆市彭水一中7年级数学下册变量之间的关系专题训练试题(含详解)_第2页
难点解析-重庆市彭水一中7年级数学下册变量之间的关系专题训练试题(含详解)_第3页
难点解析-重庆市彭水一中7年级数学下册变量之间的关系专题训练试题(含详解)_第4页
难点解析-重庆市彭水一中7年级数学下册变量之间的关系专题训练试题(含详解)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市彭水一中7年级数学下册变量之间的关系专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、一个容器中装有一定质量的糖,向容器中加入水,随着水量的增加,糖水的浓度将降低,这个问题中自变量和因变量分别是()A.糖,糖水的浓度 B.水,糖水 C.糖,糖水 D.水,糖水的浓度2、某电影放映厅周六放映一部电影,当天的场次、售票量、售票收入的变化情况如表所示.在该变化过程中,常量是()场次售票量(张)售票收入(元)15020002100400031506000415060005150600061506000A.场次 B.售票量 C.票价 D.售票收入3、某居民小区电费标准为0.55元/千瓦时,收取的电费y(元)和所用电量x(千瓦时)之间的关系式为,则下列说法正确的是()A.x是自变量,0.55是因变量 B.0.55是自变量,x是因变量C.x是自变量,y是因变量 D.y是自变量,x是因变量4、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上学时间,于是加快马加鞭提高车速,在下图中给出的示意图中(s为距离,t为时间)符合以上情况的是()A. B. C. D.5、刘师傅到加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是().A.金额 B.单价 C.数量 D.金额和数量6、一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()A. B.C. D.7、已知一辆汽车行驶的速度为,它行驶的路程(单位:千米)与行驶的时间(单位:小时)之间的关系是,其中常量是()A. B. C. D.和8、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快9、下表是研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x(kg)12345弹簧长度y(cm)1012141618则弹簧不挂物体时的长度为().A.4cm B.6cm C.8cm D.10cm10、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x小时后,产生电费y(元)与时间(小时)之间的函数关系式是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、一水池有两个进水口,一个出水口,一个水口在单位时间内的进、出水量如图(a)、(b)所示,某天从0点到6点,该水池的蓄水量如图(c)所示,给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点一定不进水不出水.则正确的论断是________.(填上所有正确论断的序号)2、某种储蓄的月利率是,存入元本金后,则本息和(元)与所存月数之间的关系式为____(不考虑利息税).3、若一个三角形底边长是x,底边上的高为8,则这个三角形的面积y与底边x之间的关系式是____.4、如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为,则高从变化到时,三角形的面积变化范围是____.5、圆锥的底面半径为4cm,高为hcm,那么圆锥的体积与的关系式为________.6、等腰三角形顶角为度,底角为度,则之间的函数关系式是_____.7、声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y随温度x的升高而_____.在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.8、一名老师带领名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为元,则与的关系式为______.9、如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.①第24天的销售量为200件;②第10天销售一件产品的利润是15元;③第12天与第30天这两天的日销售利润相等;④第30天的日销售利润是750元.10、一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm.如果挂上的物体的总质量为x千克时,弹簧的长度为为ycm,那么y与x的关系可表示为y=______.三、解答题(6小题,每小题10分,共计60分)1、一辆汽车油箱内有油a升,从某地出发,每行驶1小时耗油6升,若设剩余油量为Q升,行驶时间为t/小时,根据以上信息回答下列问题:(1)开始时,汽车的油量______升;(2)在行驶了______小时汽车加油,加了______升,写出加油前Q与t之间的关系式______;(3)当这辆汽车行驶了9小时,剩余油量多少升?2、已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.3、如图,在一个半径为的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的圆环面积也随之发生变化.(结果保留).(1)在这个变化过程中,自变量、因变量各是什么?(2)求圆环的面积与的关系式.(3)当挖去圆的半径为时,剩下圆环面积为多少?4、地表以下岩层的温度与它所处的深度在表中的关系:岩层的深度h/km123456…岩层的温度t/℃5590125160195230…(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)岩层的深度h每增加1km,温度t是怎样变化的?试写出岩层的温度t与它的深度h之间的关系式;(3)估计岩层10km深处的温度是多少.5、声音在空气中传播的速度随气温的变化而变化,科学家测得两种气温下声音传播的速度如下表.如果用表示气温,表示该气温下声音在空气中的传播速度,那么,其中,是常数.气温(℃)声音的传播速度(米/秒)033620342(1)求,的值;(2)求气温为时,声音在空气中的传播速度.6、“十一”期间,小明和父母一起开车到距家200km的景点旅游,出发前,汽车油箱内储油45L,当行驶150km时,发现油箱余油量为30L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280km时,求剩余油量Q的值.-参考答案-一、单选题1、D【分析】根据对浓度的认识解答本题,糖的质量不变,加的水越多,糖水的浓度度越小,糖水的浓度随着加入水的变化而变化,据此解答即可.【详解】解:随着水的加入,糖水浓度变小,自变量是加入的水量,因变量是糖水的浓度.故选:D.【点睛】此题考查的是常量与变量的概念,掌握其概念是解决此题的关键.2、C【分析】根据表格可知,场次、售票量、售票收入中,不变的量是票价,进而根据函数的定义可知票价是常量.【详解】根据表格数据可知,不变的量是票价,则常量是票价.故选C.【点睛】本题考查了函数的定义,掌握常量是不变的量是解题的关键.3、C【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.4、D【分析】根据题意和一次函数的性质求解即可.【详解】根据题意得,符合以上情况的图象是故答案为:D.【点睛】本题考查了一次函数的行程问题,掌握一次函数的性质是解题的关键.5、D【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.6、B【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【详解】解:公共汽车经历:加速,匀速,减速到站,加速,匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象:只有选项B符合题意;故选:B.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7、B【分析】根据常量的定义即可得答案.【详解】∵汽车行驶的速度为,是不变的量,∴关系式中,常量是50,故选:B.【点睛】此题主要考查了常量与变量,正确理解常量与变量的定义是解题关键.8、B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.9、C【分析】根据表格数据,设弹簧长度y与所挂物体重量x的关系式为,进而求得关系式,令即可求得弹簧不挂物体时的长度.【详解】设弹簧长度y与所挂物体重量x的关系式为,将,分别代入得,解得即,将,分别代入,符合关系式,当时,则,故选C.【点睛】本题考查了变量与表格,函数关系式,找到关系式是解题的关键.10、A【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得:,故选A.【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.二、填空题1、①【分析】先由图(a)、(b)可得进水速度和出水速度,再对图(c)的三个时间段结合图象逐一判断即可.【详解】解:由图(a)、(b)可知,进水速度为1,出水速度为2,①0点到3点时,蓄水量增加速度为,说明开放两个进水口,关闭出水口,即只进水,所以①正确;②3点到4点时,蓄水量减少速度为,说明开放一个进水口,一个出水口,所以②错误;③4点到6点时,蓄水量持平,可能不进水不出水,也可能开放两个进水口,一个出水口,所以③错误.故答案为:①.【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象横纵坐标的意义、读懂图象提供的信息是解题关键.2、【分析】根据题目所给的数据和利息公式,即可得答案.【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为:y=0.2x+100,故答案为:y=100+0.2x.【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键.3、y=4x【分析】根据三角形的面积公式求解即可得到答案.【详解】解:∵三角形底边长是x,底边上的高为8,三角形的面积为y,∴,故答案为:.【点睛】本题主要考查了求两个变量之间的关系式,解题的关键在于能够熟练掌握三角形的面积公式.4、变为【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算,即可得到答案.【详解】解:三角形的面积最小值为,最大值为,故三角形的面积变化范围是三角形的面积由15变为50.故答案为:变为.【点睛】本题主要考查了三角形的面积公式,能利用三角形面积公式计算三角形面积的是解题的关键.5、【分析】由圆锥的体积公式得圆锥的体积V(cm3)与高h(cm)的关系式,从而求解.【详解】解:圆锥的体积公式为,∵圆锥的底面半径是4cm,∴,故答案为:【点睛】本题主要考查了函数关系式,本题的关键是熟记圆锥的体积公式.6、y=180-2x【解析】【分析】根据三角形内角和可得2x+y=180°,再整理成函数关系式的形式即可.【详解】解:由题意得:2x+y=180°,整理得:y=180-2x.【点睛】本题主要考查了列函数关系式,关键是掌握等腰三角形两底角相等,三角形内角和为180°.7、增大;68.6.【分析】从表格可以看到y随x的增大而增大;20℃时,音速为343米/秒,距离为343×0.2=68.6米.【详解】从表格可以看到y随x的增大而增大;20℃时,音速为343米/秒,343×0.2=68.6米,这个人距离发令点68.6米;故答案为:增大;68.6.【点睛】本题考查变量之间的关系,函数的表示方法;能够通过表格观察出变量的变化关系,利用表格的数据计算距离是解题的关键.8、【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:.故答案是:.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.9、①②④.【分析】图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.【详解】解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,由图2可得:z=,当t=10时,z=15,因此②也是正确的,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,把(0,100),(24,200)代入得:,解得:,∴y=t+100(0≤t≤24),当t=12时,y=150,z=-12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,因此③不正确,④正确,故答案为①②④.【点睛】本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.10、10+1.5x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可,根据函数的定义判断自变量及因变量.弹簧的总长度y(cm)可以表示为y=10+1.5x【详解】y=10+1.5x,所挂物体总质量x,弹簧的总长度y【点睛】此题考查二元一次函数的应用,难度不大三、解答题1、(1)42;(2)5,24,;(3)当这辆汽车行驶了9小时,剩余油量12升.【分析】(1)直接由图象中的数据得出即可;(2)由加油前汽车每小时的耗油量,即可得出关系式;(3)先求出加油后3小时的耗油量即可求得剩余量.【详解】解:(1)由图象可知,开始时,汽车的油量42升,故答案为:42;(2)由图象可知,在行驶了5小时汽车加油,加了36﹣12=24升,∵加油前汽车每小时的耗油6升,∴加油前汽车剩余油量Q=42﹣6t,故答案为:5,24,;(3)由题意,加油后汽车每小时的耗油6升,∴加油后剩余油量Q=(升),故当这辆汽车行驶了9小时,剩余油量12升.【点睛】本题考查用图象表示变量间的关系、有理数的混合运算,理解题意,能从图象中获取有效信息是解答的关键.2、y=﹣x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=AC•BD=AB•BC,∴BD=;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=AP•BD=×(10﹣x)×=﹣x+24,∴y与x之间的关系式为:y=﹣x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.3、(1)自变量是小圆的半径,因变量是圆环面积;(2)y=;(3)【分析】(1)根据自变量与因变量的定义解答即可;(2)根据圆环面积的计算方法求解即可;(3)把x=9代入(2)题的关系式中计算即得结果.【详解】解:(1)自变量是小圆的半径,因变量是圆环面积;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论